

Strategic plan for the long-term development of JINR The scientific program of the Laboratory of Radiation Biology for the period up to 2030

E.A. Nasonova

Dubna, September, 19, 2019

Expert Group in the Radiobiology — Astrobiology field

Chairman E. Krasavin (JINR), Corr. Member RAS, Lab. Dir. krasavin@jinr.ru M. Ostrovsky (JINR), Acad. RAS ostrovsky3535@mail.ru A. Rozanov (JINR), Acad. RAS aroza@paleo.ru A. Bugay (JINR), Dr. bugay@jinr.ru I. Koshlan (JINR), Dr. koshlan@yandex.ru G. Timoshenko (JINR), Dr. tim@jinr.ru E. Nasonova (JINR), Dr. nasonova@jinr.ru **Co-chairman** *R. Arutyunyan*, Corresponding Member of the National Academy of Sciences of Armenia, Yerevan University (Armenia) rouben_a@hotmail.com **M. Waligórski**, Prof., Institute of Nuclear Physics, Krakow (Poland) z5waligo@cyf-kr.edu.pl A.I. Gaziev, Prof., Institute of Cell Biophysics, the Russian Academy of Sciences (RAS), Pushchino (Russia) gaziev.iteb@gmail.com A.I. Grigoryev, Acad. RAS, Institute of Biomedical Problems RAS (Russia) grigoriev@imbp.ru

R. Hoover, Prof., Athens State University (the U.S.) <u>Entogonia@aol.com</u> *E. Di Mauro*, Prof., La Sapienza University of Rome (Italy) <u>ernesto.dimauro@uniroma1.it</u>

The *main stages* of the implementation of JINR's radiobiological research **strategy**

- Establishment of an international working group 2018.
- *Discussion of the main fields* of the strategic plan "JINR's Radiobiological Research" at a visiting session of the Bureau of the RAS Scientific Council on Radiobiology (Dubna, 30 May 2018).
- *Discussion of the strategy* of JINR's radiobiology and astrobiology research development at the <u>International Conference</u> "Modern Problems of General and Space Radiobiology" (Dubna, 11–12 October 2018).
- *Publication of the International Working Group's scientific report* of JINR's radiobiological research strategy *in the 2nd quarter* of 2019.

THE MAIN FIELDS OF RESEARCH

15 people

Molecular radiobiology

Induction and repair of DNA doublestrand breaks (DSB) by particle beams:

- clustered DNA damage
- normal human cells of different origin

Main future topics:

- Evaluation of DNA damage and repair in:
 - tumor cell lines
 - brain structures in vivo
 - different neural cells
- Contribution of different repair pathways in the repair of clustered DNA damage

Radiation cytogenetics

10 people

chromosome aberrations – biomarker of radiation exposure

or

Main future topics:

- *complex aberrations induction by particle beams* → *revision of previously obtained RBE values*
- *long-term consequences of radiation exposure in human and mammals*

Radiation physiology 15 people

Main future topics:

Large-scale animal in vivo experiments to evaluate radiation-induced damage to Central Nervous System (CNS)

- pathomorphological changes in CNS structures
- behavioral and cognitive disorders
- radioprotectors and modification of induced damage

J.Encinas et al., 2011

- Mechanisms of CNS radiation damage:
- Neurogenesis
- The role of glial cells:
 - i. Neuroinflammation
 - ii. Demyelination

Radiation Physiological studies on primates

top priority research!

Main goal:

to model the human ability <u>to perform</u> <u>under radiation</u> <u>exposure</u> during deep space flights

RAS Institute of Biomedical Problems, RAS Institute of Medical Primatology, RAS Institute of Higher Nervous Activity and Neurophysiology, Moscow State University

Main future topics:

- cognitive, behavioral and physiological disorders
- caused by <u>heavy charged</u> <u>particles</u> (C, Fe)
- during <u>deep space flight</u>
 <u>simulation</u> (chronic γ- irradiation combined with periodic ion exposure and hypokinesia);
- radioprotectors which can prevent or reduce the radiation-induced central nervous system disorders

Without RM

With RM

Radiation Medicine

The new method for increasing the biological efficiency of ionizing radiation, particularly, proton beams was invented and recently patented in LRB

15-fold increase of proton beam efficiency by DNA synthesis inhibitors

Main future topics:

- effect of DNA synthesis inhibitors
- on survival of normal and tumor human cell lines (glioblastoma) after proton and γ-irradiation
- on the biological efficiency of proton and γ-ray exposures <u>in vivo</u>.
- Preclinical animal study with transplanted tumors

4 h

Time, h

Mathematical modeling of radiation-induced effects

Application of **novel** for traditional theoretical radiation biology methods

Hierarchy of models:

10 people

Simulation of molecular damage in neural tissue

Molecular dynamics Decreased conductance of mutant synaptic receptors

Main future topics:

• Monte Carlo modeling of <u>energy deposition</u> in charged particle tracks, molecular damage

•DNA damage <u>repair</u>, formation of mutations and chromosome <u>aberrations</u>

•Structure and functions of mutant forms of proteins

•Intracellular <u>signaling processes</u>, oxidative stress

•Neurogenesis and gliogenesis

•Functional electrophysiological activity of brain neural networks

Astrobiology

SCIENTIFIC REPORTS

OPEN Proton irradiation: a key to the challenge of N-glycosidic bond formation in a prebiotic context

13

15

conthesis of prehintic compounds

Radiation research

Radiation Protection

- Design of radiation protection management and shielding at new nuclear facilities
- Neutron spectrometry in wide energy range
- Asrtonaut's risk assessment during long-term interplanetary flights

Portable multisphere neutron spectrometer

Nuclear Planetology

• Nuclear planetary science instruments for space in collaboration with FLNP, Roskosmos, NASA and ESA

• Our home-designed neutron and gamma-ray spectrometers onboard of ISS, Lunar, Martian, Mercury missions

• LRB radiation facility for testing nuclear planetology instruments in collaboration with SRI

Infrastructure development

Purchasing of new modern equipment:

- Flow cytometer sorter FACS AriaIII (~ 0.7 mln. \$)
- System for scanning, processing and analysis of cytogenetic images (~ 0.2 mln. \$)
- Station for automated cultivation and analysis of cell cultures IM-Q (~ 0.09 mln \$)
- Real-time amplifier with the ability to set a temperature gradient (~ 0.03 mln \$)
- Gel and chemodocumenting system with transilluminator (~ 0.015 mln \$)
- Solid-state thermostat and reagents for genetic engineering (~ 0.013 mln \$)
- Fluorescent tomography in vivo imaging system and hemoanalyser (~ 0.37 mln \$)
- Upgrade of computing infrastructure (~ 0.54 mln \$)

Total: ~2 mln \$

Sources of ionizing radiation

- FLNR: U400M accelerator: light ions with an energy of up to 50 MeV / nucleon;
- VLHEP: Nuclotron accelerator: Carbon ions beams (E=500 MeV/nucleon), krypton ions (E=2.57 GeV / nucleon)
- DLNP: Medical technical complex: proton beams 170 MeV ans SOBP
- <u>In future:</u> Nuclotron (NICA): iron and other ions with an energy of ~ 500 MeV/nucleon.

Education

For more than 20 years, the Department of Biophysics at the Dubna State University has been preparing undergraduate and graduate students.

- <u>the preparation of bachelors</u> in the field of Nuclear Physics and Technology (the Radiation Safety of Man and the Environment profile);
- *preparation of masters* in the field of "Physics" (master's program "Radiation Biophysics and Astrobiology");
- training of highly qualified personnel *in <u>the postgraduate course</u>* <u>*''Radiobiology''*.</u>

Thank you for attention!

