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Momentum subtraction schemes use cases

I. Gell-Mann and Low v-function and QED MOM scheme e.g.
2. Minimal MOM scheme (asymmetric point)

3. MOM as alternative scheme for QCD calculations

- Redefine coupling in MOM scheme e.g. R(s)
- Extract strong coupling value from lattice data

4. Various operator insertions renormalized in symmetric point

- Quark masses from lattice data
- Moments of non-singlet operators
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Key ingredient for two-loop symmetric point calculations

(
K

» Two-loop vertex integrals are known for arbitrary external momenta for a long time

- From Mellin-Barnes integration
- Higher orders in terms of 2dHPLs

- Parametric integration after apropriate variable change
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Two-loop applications

» Symmetric point results
- Three loop QCD MOM beta-functions
- Two-loop matching factors for quark masses
- Amplitudes for the n = 3 moment of the Wilson operator
- Two loop QCD vertices at the symmetric point
- Flavour singlet axial vector current renormalization at two loops

* Interpolating scheme
- Two-loop matching factors for quark masses

- Renormalization of QCD in the interpolating MOM scheme
* General off-shell
- Off-shell two loop QCD vertices

- Off-shell quark bilinear operator Green'’s functions
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Kinematics of three-point functions

We use following momenta assignment:

q
b1 b2
Kinematic configurations of interest:
+ Symmetric point condition: p} = p3 = q®> = —1. Is a number.
« Auxiliary integrals: p? = p3 = —1 and ¢ = —x. Is a function of z.

+ General 3-pt functions: p? = —1,p3 = —zzand ¢*> = —(1 — 2)(1 — 2).
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Linear reducibility and direct integration

For two-loop case and partially for three-loop case itis
proven that general 3-pt integrals are linear reducible and can be calculated in terms of
Generalized Polylogarithms(GPLs) G(a1, . . . an; 1) with following alphabet a;:

[,2-loop 3-loop

2,2,1—2,1—2,2—2 2z—1l,z+z2—-1,22—2—2

For symmetric point case alphabet reduces to sixth roots of unity
a; = 0,41, /3 ¢x2im/3 Basis of GPLs upto the transcendental weight six constructed
in

Our conjecture: symmetric point integrals can be expressed via more restricted basis of

Harmonic Polylogrithms(HPLs) Ha, .., (t), a; = 0, +:1 with argument ¢ = ein/3
constructed upto weight six in
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Symmetric point direct integration
Used strategy:

| Start with the set of master integrals at symmetric point, p? = p3 = ¢> = —1

2. Using dimension shifts and/or increasing powers of propagators if needed we find
basis of quasi-finite integrals

3. Introduce Feynman parameters and expand in € = 2 — d/2 under integral sign each
member of a new basis, safe due to the absence of overlaping divergencies

4. Use slightly modified HyperInt package capable to work with
polynomials factorized with field extension e.g.

z2fz+1:(z—e%r)(zfe_%ﬂ)

Works well for one-loop, two-loop and most of three-loop integrals. Due to the field
extension works unstable. Failed on the most complicated integrals.
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Differential equations for auxiliary integrals

q

b1 P2

+ Consider auxiliary integrals with p? = p3 = —1 and ¢* = —x

+ Change variables © = 2 — z — 1/z to make line reducibility explicit

Limiting cases:

l | z2—0 x — 00 massless form-factor
2 z—1 x — 0  massless propagators
32— -1 x—4 threshold ¢> = 4m?
4| z—5ef3 1 symmetric point
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Bringing differential equations into canonical form

Orriginal DE system

df| -
9 _ (e, 02
Aplying transformation f(z) = T'(e, z)§(z) system converted into canonical form
W) _ em'()3(2)

e-dependence factorized and DE system have Fuchsian form with constant A; matrices

Ap A A_4 A Ay
M'(z) ==
(2) z+zfl+z+1+zf)\+zf)\*

To find T'(e, z) we use code epsilon capable to work with algebraic numbers
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Solution of DE system in terms of iterated integrals
Series expansion of each integral g; in € starts from some finite order v;

o
k
= Z " 9ik(2)
k=v;
Thus for some v small enough, such that v < min(vy, ..., v,) we can putall g; ,(2) =0

Due to the e-form of DE system if we expand g; in € then DE system for g; 1.(2) decouples
and we can solve it easily order by order in

9i,k+1(2) =Cip —l—/ dtM{j(t)gjvk(t) =Ci +/
0

Answer expressible in terms of GPLs since we have the foIIowmg integration rules

G(;2) =1, G(al;z):/ dt , G(al...an;z):/ dt G(ag...an;2)
0 0

t—a1 t—a1
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One-loop example
At one-loop we have only 3 master integrals:

]
flz /"/J\ f2: ,/ \\ f3_ ,l\

’ ’ v

o % ol
N RN
Orriginal DE system:
d fl 8 s(l(—)i-z) 8 fl
e fo]l = 2(1—2) e f2
B \&% B e/ \b

Transformation matrix 1" connecting original and canonical basis:

fi 2:71 0 0 g1
L]l=10 55 0 g2
4

f3 0 0 ==/ \u
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One-loop integrals in canonical basis

d [ 1 0 0 O 1 0 0 O 1 0 00 g1
d—g2257010+10—20+1000 g2
“ \gs “\22 -1/ 7"\ 0o o) T \o o0 2/| \g
~—_—— ~—_——— ~——
L Ao A A_q i
Several first steps of bottom up integration, we use v = —4 and assume that g; _4 = 0:
Ci—3 , Ci—2 , C1 0
91=-3 + 2 + . + 0 (£)
Co 3 1 1
go = 3 + ? (C2773(G(0; Z) — 2G(1, Z)) + C2772) + 0O g
C3—3 1 1
93="3 + 2 (2C3,_3G(—1;2) — (2C1,—3 — 2C2,_3 + C3,-3)G(0;2) + C3._2) + O -
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Fixing boundary conditions

Constraints on C; i, strongly depend on the g;(z) expansion near DE singular points

I. Regularity conditions and constraints from allowed non-integer powers

F=C+0(z—e3), §= (1-2)72C,+ 01~ 2)

n

2. Contributions from hard subgraphs calculated from naive expansion

—>A—>Co

3. Large momentum asymptotic expansion, all needed subgraphs generated with EXP
package and require only massless propagator integrals treated
by the MINCER package
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QCD renormalization in MOM scheme from 3pt functions

6 b A4

T'a99 ey 1999

Scalar form-factors relevant for renormalization:

[ i (p1,p2) = gsT3; (Wqug(—pﬂ) + .. )
Fabc(p17p2) _ _,L-gsfabc (pTgV“F(:(:g(_lﬂ) + .. )
T, (prsp2) = igs ™ (Tupl 5 (= %) + ...)

For each of V' = {qqg, ccg, ggg} we define scheme MOMy, by condition T'Y, (—u?) =1

ren (
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Calculation of three-loop renormalization constants

To calculate bare three-loop form-factors we use projectors defined in

Vertex renormalization constants defined by:

1 2
oy~ Dbare(=H)

1
chg

1
=The(1) 7 — =Thare=1)

Coupling constant renormalization factors:

% 2 2
—2,, — 7 Qe — Zggg o — chg G — qug a
H bare = Zarenren = 73 88 = | 72 & ccg 72 7 qqg
gg cc~gg qq“'gg
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Coupling constant conversion factors and 4-loop beta functions

Couplings ap in different renormalization schemes are connected with ag;g:

14+ ng)ai\/lsl
!

Our main result: calculation of three-loop corrections to the conversion factors

aR = (ZQR/ZGWS> ays = OysXR = O35

3 3 3
Xiox Xia Xig
Using known L-loop conversion factor and L + 1-loop QCD beta-function in MS scheme

_ daR 73aR(aM—S)
T dlnp?  Oaggs

Br

- Pris(axig)

We derive expressions for L-loop beta functions of our interest 84qg, Becg and Bggg
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Numerical results and possible applications

Two-loop part is universal Byui(a) = —a?(11 — 2/3 ng) — a3(102 — 38/3 ng)
Three-loop and four-loop parts are different in different schemes

Becg = Buni(accg) ate, (2813.492052 — 617.6471546 0, + 21.50281811 12)

aZ., (96089.34786 — 23459.32128 11, + 1735.992218 n? — 33.24145137 %)

Bz = ﬁuni(aqqg) Uy (1843.652731 — 588.6548459 1, + 22.58781183 n%)

a5, (68529.68547 — 15466.43194 11, + 1093.568841 n? — 18.85323795 1%

Beeg = ﬂuni(aggg) aty, (1570.9844 + 0.56592607 n; — 67.089536 1% + 2.6581155 1)

a5y, (94167.261 — 27452.645 1 + 4152.5388 1 — 543.68484 1% + 20.429348 1))

Application of conv.factor: R(s) in MOM schemes, extension of
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Vertex functions with operator insertions and quark masses

Ogs
() (]
Quark mass conversion factor relates mg/[S to the the value available from lattice
__ ZSMOM
mg/IS _ CSLMOMmgMOM CTS’LMOM _ Zm__
ZMS
m

Bare mass and conversion between renormalization schemes

R, R MS, MS SMOM, SMOM
Mbare = meq =2Z., my o = Z,, my

Mass renormalization from the scalar bilinear operator renormalization

Os = 1/}(/}7 W?ﬁ]R = Zr%(r&w)bare
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Details of calculation and results
Renormalization conditions in Landau gauge, calculated order by order

1 = ZSMOM ZiMOM 1 tr [ Agare:| )

12

pi=p3=q*=—p
1= ZSMOM

1
T]ﬂ [ZSbare( ) ] p2=—p?

Repeating calculation for the MS scheme and using MS scheme for agzg renormalization

CSMOM — 1 — 0.6455188560a555 — (22.60768757 — 4.013539470 1 ;) a2
— (860.2874030 — 164.7423004 11, + 2.184402262 % )ad

+ Set of master integrals used is the same as before

» Small set of transcendental constants 7, (3, Cs, () (1/3),43)(1/3),®)(1/3)
» Two new constants HPLs of fixed transcendental weight Hs, Hg

* Result in full agreement with independent numerical calculation
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Conclusion

Calculated full set of three-point three-loop integrals in symmetric point. Results
expressed in terms of HPLs with argument es

Constructed three-loop conversion factor relating couplings defined in different MOM
schemes with MS

Using three-loop conversion factor derived four-loop beta-functions in various MOM
schemes

Calcualted three-loop corrections to the relation between MS quark masses and
quark masses defined in symmetric point MOM scheme
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Thank you for attention!
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