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Momentum subtraction schemes use cases

1. Gell-Mann and Low ψ-function and QED MOM scheme e.g. [Baikov et al.'12]

2. Minimal MOM scheme (asymmetric point) [Braaten,Leveille'81]

3. MOM as alternative scheme for QCD calculations [Celmaster,Gonsalves'79]

- Redefine coupling in MOM scheme e.g. R(s)
- Extract strong coupling value from lattice data

4. Various operator insertions renormalized in symmetric point [Sturm et al.'10]
- Quark masses from lattice data
- Moments of non-singlet operators
- ...
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Key ingredient for two-loop symmetric point calculations

• Two-loop vertex integrals are known for arbitrary external momenta for a long time

- From Mellin-Barnes integration [Usyukina,Davydychev'94]

- Higher orders in terms of 2dHPLs [Birthwright,Glover,Marquard'04]

- Parametric integration after apropriate variable change [Chavez,Duhr'12]
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Two-loop applications

• Symmetric point results

- Three loop QCD MOM beta-functions [Chetyrkin,Seidensticker'00][Gracey'11]

- Two-loop matching factors for quark masses [Almeida,Sturm'10]

- Amplitudes for the n = 3 moment of the Wilson operator [Gracey'11]

- Two loop QCD vertices at the symmetric point [Gracey'11]

- Flavour singlet axial vector current renormalization at two loops [Gracey'20]

• Interpolating scheme
- Two-loop matching factors for quark masses [Gorban,Jager'10]

- Renormalization of QCD in the interpolating MOM scheme [Gracey,Simms'18]
• General off-shell

- Off-shell two loop QCD vertices [Gracey'14]

- Off-shell quark bilinear operator Green’s functions [Gracey'19]
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Kinematics of three-point functions

We use following momenta assignment:

q

p1 p2

Kinematic configurations of interest:

• Symmetric point condition: p21 = p22 = q2 = −1. Is a number.

• Auxiliary integrals: p21 = p22 = −1 and q2 = −x. Is a function of x.

• General 3-pt functions: p21 = −1, p22 = −zz̄ and q2 = −(1− z)(1− z̄).
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Linear reducibility and direct integration

For two-loop case [Chavez,Duhr'12] and partially for three-loop case [Panzer'14] it is
proven that general 3-pt integrals are linear reducible and can be calculated in terms of
Generalized Polylogarithms(GPLs) G(a1, . . . an; 1) with following alphabet ai:

1,2-loop 3-loop
z, z̄, 1− z, 1− z̄, z − z̄ zz̄ − 1, z + z̄ − 1, zz̄ − z − z̄

For symmetric point case alphabet reduces to sixth roots of unity
ai = 0,±1, e±iπ/3, e±2iπ/3. Basis of GPLs upto the transcendental weight six constructed
in [Henn,Smirnov,Smirnov'15].

Our conjecture: symmetric point integrals can be expressed via more restricted basis of
Harmonic Polylogrithms(HPLs) Ha1,...an(t), ai = 0,±1 with argument t = eiπ/3

constructed upto weight six in [Kniehl,AP,Veretin'17]
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Symmetric point direct integration

Used strategy:

1. Start with the set of master integrals at symmetric point, p21 = p22 = q2 = −1

2. Using dimension shifts and/or increasing powers of propagators if needed we find
basis of quasi-finite integrals[Manteuffel,Panzer,Schabinger'14]

3. Introduce Feynman parameters and expand in ε = 2− d/2 under integral sign each
member of a new basis, safe due to the absence of overlaping divergencies

4. Use slightly modified HyperInt package[Panzer'14] capable to work with
polynomials factorized with field extension e.g.

z2 − z + 1 = (z − e
iπ
3 )(z − e−

iπ
3 )

Works well for one-loop, two-loop and most of three-loop integrals. Due to the field
extension works unstable. Failed on the most complicated integrals.
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Differential equations for auxiliary integrals

q

p1 p2

• Consider auxiliary integrals with p21 = p22 = −1 and q2 = −x
• Change variables x = 2− z − 1/z to make line reducibility explicit

Limiting cases:

1 z → 0 x→ ∞ massless form-factor
2 z → 1 x→ 0 massless propagators
3 z → −1 x→ 4 threshold q2 = 4m2

4 z → e±
iπ
3 x→ 1 symmetric point
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Bringing differential equations into canonical form

Original DE system
d~f(z)

dz
=M(ε, z)~f(z)

Aplying transformation ~f(z) = T (ε, z)~g(z) system converted into canonical form

d~g(z)

dz
= εM ′(z)~g(z)

ε-dependence factorized and DE system have Fuchsian form with constant Ai matrices

M ′(z) =
A0

z
+

A1

z − 1
+

A−1

z + 1
+

Aλ
z − λ

+
Aλ∗

z − λ∗

To find T (ε, z) we use code epsilon [Prausa'17] capable to work with algebraic numbers
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Solution of DE system in terms of iterated integrals
Series expansion of each integral gi in ε starts from some finite order vi

gi(ε, z) =

∞∑
k=vi

εkgi,k(z)

Thus for some v small enough, such that v < min(v1, . . . , vn) we can put all gi,v(z) ≡ 0

Due to the ε-form of DE system if we expand gi in ε then DE system for gi,k(z) decouples
and we can solve it easily order by order in ε

gi,k+1(z) = Ci,k +
∫ z

0
dtM ′

ij(t)gj,k(t) = Ci,k +
∫ z

0
dt

∑
r

(Ar)ij
t− r

gj,k(t)

Answer expressible in terms of GPLs since we have the following integration rules

G(; z) = 1, G(a1; z) =

∫ z

0

dt

t− a1
, G(a1 . . . an; z) =

∫ z

0

dt

t− a1
G(a2 . . . an; z)
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One-loop example
At one-loop we have only 3 master integrals:

f1 = f2 = f3 =

Original DE system:

d

dz

f1f2
f3

 =

 0 0 0

0 ε(1+z)
z(1−z) 0

2−4ε
z2−1

2−4ε
1−z2

ε(1−z)2−1−z2
z(z2−1)


f1f2
f3


Transformation matrix T connecting original and canonical basis:f1f2

f3

 =

 ε
2ε−1 0 0

0 ε
2ε−1 0

0 0 z
z2−1

g1g2
g3


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One-loop integrals in canonical basis

d

dz

g1g2
g3

 = ε


1

z

 0 0 0
0 1 0
−2 2 −1


︸ ︷︷ ︸

A0

+
1

z − 1

0 0 0
0 −2 0
0 0 0


︸ ︷︷ ︸

A1

+
1

z + 1

0 0 0
0 0 0
0 0 2


︸ ︷︷ ︸

A−1


g1g2
g3



Several first steps of bottom up integration, we use v = −4 and assume that gi,−4 ≡ 0:

g1 =
C1,−3

ε3
+

C1,−2

ε2
+

C1,−1

ε
+O

(
ε0
)

g2 =
C2,−3

ε3
+

1

ε2
(C2,−3(G(0; z)− 2G(1; z)) + C2,−2) +O

(
1

ε

)
g3 =

C3,−3

ε3
+

1

ε2
(2C3,−3G(−1; z)− (2C1,−3 − 2C2,−3 + C3,−3)G(0; z) + C3,−2) +O

(
1

ε

)
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Fixing boundary conditions

Constraints on Ci,k strongly depend on the gi(z) expansion near DE singular points

1. Regularity conditions and constraints from allowed non-integer powers

~g = ~C +O(z − e
iπ
3 ), ~g =

∑
n

(1− z)−2nε ~Cn +O(1− z)

2. Contributions from hard subgraphs calculated from naive expansion

→ → C0

3. Large momentum asymptotic expansion, all needed subgraphs generated with EXP
package [Seidensticker'99] and require only massless propagator integrals treated
by the MINCER package
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QCD renormalization in MOM scheme from 3pt functions

Γqqg Γccg Γggg

Scalar form-factors relevant for renormalization:

Γaµ,ij(p1, p2) = gsT
a
ij

(
γµΓ

qqg(−µ2) + . . .
)

Γabcµ (p1, p2) = −igsfabc
(
pν1gνµΓ

ccg(−µ2) + . . .
)

Γabcµνρ(p1, p2) = igsf
abc

(
TµνρΓ

ggg(−µ2) + . . .
)

For each of V = {qqg, ccg, ggg} we define scheme MOMV by condition ΓV
ren(−µ2) = 1
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Calculation of three-loop renormalization constants

To calculate bare three-loop form-factors we use projectors defined in [Gracey'11]

Vertex renormalization constants defined by:

1

Zqqg
= Γqqg

bare(−µ
2)

1

Zccg
= Γccg

bare(−µ
2)

1

Zggg
= Γggg

bare(−µ
2)

Coupling constant renormalization factors:

µ−2εabare = Zarenaren =

[
Z2

ggg
Z3

gg

]
aggg =

[
Z2

ccg
Z2

ccZgg

]
accg =

[
Z2

qqg
Z2

qqZgg

]
aqqg
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Coupling constant conversion factors and 4-loop beta functions

Couplings aR in different renormalization schemes are connected with aMS:

aR =
(
ZaR/ZaMS

)
aMS ≡ aMSXR = aMS

[
1 +

∑
l

X
(l)
R alMS

]

Our main result: calculation of three-loop corrections to the conversion factors

X
(3)
qqg X

(3)
ccg X

(3)
ggg

Using known L-loop conversion factor and L+ 1-loop QCD beta-function in MS scheme

βR ≡ daR
d lnµ2

=
∂aR(aMS)

∂aMS
· βMS(aMS)

We derive expressions for L-loop beta functions of our interest βqqg, βccg and βggg
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Numerical results and possible applications

Two-loop part is universal βuni(a) = −a2(11− 2/3nf )− a3(102− 38/3nf )

Three-loop and four-loop parts are different in different schemes

βccg = βuni(accg)− a4ccg
(
2813.492952− 617.6471546nf + 21.50281811n2f

)
− a5ccg

(
96089.34786− 23459.32128nf + 1735.992218n2f − 33.24145137n3f

)
βqqg = βuni(aqqg)− a4qqg

(
1843.652731− 588.6548459nf + 22.58781183n2f

)
− a5qqg

(
68529.68547− 15466.43194nf + 1093.568841n2f − 18.85323795n3f

)
βggg = βuni(aggg)− a4ggg

(
1570.9844 + 0.56592607nf − 67.089536n2f + 2.6581155n3f

)
− a5ggg

(
94167.261− 27452.645nf + 4152.5388n2f − 543.68484n3f + 20.429348n4f

)
Application of conv.factor: R(s) in MOM schemes, extension of [Gracey'14]
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Vertex functions with operator insertions and quark masses

⊗
OS

ψ ψ

Quark mass conversion factor relatesmMS
q to the the value available from lattice

mMS
q = CSMOM

m mSMOM
q CSMOM

m =
ZSMOM
m

ZMS
m

Bare mass and conversion between renormalization schemes

mbare = ZR
mm

R
q = ZMS

m mMS
q = ZSMOM

m mSMOM
q

Mass renormalization from the scalar bilinear operator renormalization

OS ≡ ψ̄ψ,
[
ψ̄ψ

]
R = ZR

m(ψ̄ψ)bare
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Details of calculation and results
Renormalization conditions in Landau gauge, calculated order by order

1 = ZSMOM
m · ZSMOM

ψ · 1

12
· tr

[
Λbare
S

]∣∣∣
p21=p

2
2=q

2=−µ2

1 = ZSMOM
ψ · 1

12p2
·tr

[
iS−1

bare(p)p̂
]∣∣
p2=−µ2

Repeating calculation for the MS scheme and using MS scheme for aMS renormalization

CSMOM
m = 1− 0.6455188560aMS − (22.60768757− 4.013539470nf )a

2
MS

− (860.2874030− 164.7423004nf + 2.184402262n2f )a
3
MS

• Set of master integrals used is the same as before

• Small set of transcendental constants π, ζ3, ζ5, ψ(1)(1/3), ψ(3)(1/3), ψ(5)(1/3)

• Two new constants HPLs of fixed transcendental weight H5,H6

• Result in full agreement with independent numerical calculation [Kniehl,Veretin'20]
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Conclusion

• Calculated full set of three-point three-loop integrals in symmetric point. Results
expressed in terms of HPLs with argument e

iπ
3

• Constructed three-loop conversion factor relating couplings defined in different MOM
schemes with MS

• Using three-loop conversion factor derived four-loop beta-functions in various MOM
schemes

• Calcualted three-loop corrections to the relation between MS quark masses and
quark masses defined in symmetric point MOM scheme
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Thank you for attention!
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