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Fermionic systems

D the associated thermal action for the nonrelativistic problem
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» the symmetry of the action: ¢, = Vaxtor, V € SU(N)
) BCS—-model: N =2

> Large spin cold fermions: N > 2 Gorshkov, Nature Phys (2014)
Wu, Physics (2012)

171Yp SU(2) -0.15 nm

173y 5/2 SU(6) 10.55 nm
875 9/2 SU(10) 5.09 nm de Escobar et al., Phys. Rev. A (2008)

Kitagawa et al., Phys. Rev. Lett. (2008)



1.

The Hubbard-Stratonovich decoupling

The Cooper channel:
1
exp{——(w ¥n) } / DxDx' eXp{—ﬁtrxx + @bnxnmmer wnxnmw }

The Swinger equations show:

(Xnm) = Mtmn)

In two component systems N = 2, and thus n, m =1, |.. The nonzero value of |(x+,) % determines
a gap in the spectrum of electrons in the BCS model.

The spin-density channel:

N
eXp{——(w Un) } /D@DneXp{—%cpAcpAJr(pA% A nm — ﬁ” +na, wn}

The Swinger equations show: SU(N) generators
(n) = AW tm) /N, (@a) = 2X(Utintom)

The magnetization of the system in the case N = 2:

MZ ~ (G5 — i)



Integration over fermionic fields

_ ws =11 (2s+1),s€Z
1. The Cooper channel (superfluidity): //
A
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Expanding the action in fields and derivatives one obtains the leading infra-red (IR) term:

Sy = tr ' (p? + mg)x + 901 tr(x xx') Kalagov et al., Nucl. Phys. B

4 (2016)
2. The spin-density channel (magnetism):

S = tr (P(PQ + m%)(p + hootr @* + hor tr@*, @ = (PAtA

Mean field outcomes

For the model (1) we obtained the second For the model (2) we obtained the second
order phase transition at mg = 0 for all N. order phase transition at mg = 0 for N=2.
mg ~ 1+ Avpln 25 mé ~1— g

Attraction A < 0 may lead to superfluidity Repulsion A > 0 may lead to magnetism




The first order phase transition

In the case N > 2, the action
Se = tr @(p” + m{)@ + hoo tr @° + hoy tr et @ = @at"
contains the cubic term, and systems manifests the first order phase transition.
3/2-spin particles (N = 4)
Atomic species  13°Ba, 13"Ba Symmetry breaking SU(4) — SU(3) ® U(1)

Wu, Phys. Rev. Lett. (2006)

Burkhardt, Phys. Rev. Lett. (1991) Ruegg, Phys. Rev. D (1980)

w0 == %)
Vv12 \0 =3
Phase transition at nonzero value of mg ~ 1 — Avp, namely  Avp = 21/25 = 0.84.

The pure cubic model: 4-loop RG analysis Gracey, Phys. Rev. D (2017)



The field model with an adjoint field

The Euclidean action:

1 9
S = §tr(p(p2+mg)(p+%tr(p4+%(tf@2)2, o=0¢, tro=0 A o
i
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Multiplicative renormalization in d = 4 — ¢: W(N/2)xSU(N/2) x U(1)

¢ — Z(p(pa mg — Zm2m23 go; — gjﬂgzgj q g;z-
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RG functions: , , !
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Yo =9k 7Ly s Vm2= —Gkm L,
v Agr. * dgr~ ™ the stability conditions

go1 > 0 go1 =0 go1 <0
go1 + Ngo2 >0 go2 >0  go1 +goz >0



Phase portrait (one-loop)
The RG flow goes beyond the domain g; + Ngy > 0

1.0

N2g, N=0co N2

There are no IR stable fixed points. The model losses stability: the free energy is not bounded from below.




Loop corrections to the free energy

The one-loop free energy (effective action):

Tr(®) = Sp(P) + %trln (%)

)

e free energy is defined by the Legendre transformation:

1

p=>

The pattern of symmentry breaking has to be chosen: I'(®) = SI}P{J o —W(J)}

SU(N) — SU(N/2) x SU(N/2) x U(1) where the functional W (.J) is given by:

Background field: \ W(J)=1In /D(p exp{—S(@)+ Jo}. /

@:a(IN/Q 0 )
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The free energy per unit volume:
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Fluctuation induced first order phase

transition

Let us consider the free energy near the stability boundary g; + Ngo = 0.

Within the e-expansion we get:

m? = 0(), o®=0(1)e), g;=0(e)

As a result one obtains the leading contribution in &:

N N? —4 210
ﬁ:?m2a2+ 1 g%a‘lln( 9;3 )+ﬁ(s)

The phase transition point:

Z(0) = F(an), F'la. =0

Connection between a jump . and critical m.:

me/ag = gi (N* = 4)/(2N)

The fluctuation driven first order phase transition in
SU(N > 2) symmetric model with an adjoint field is
established.

m < Mme



Disadvantages of perturbation

expansions

The structure of actions: e The Higher Order Asymptotics

S = SO + A Sint- fn = Co(—a,)n’n,bn! LipatOV (19705)

e The Borel resummation of multi-loop expansions
The structure of observables: is required to extract physical results
N
FO) =) fud"+ Ry (N). The 5-loop RG analysis + Borel resummation
. based on the obtained HOA in the model

We assume: Sy = trx"(p* + mg)x + % or(xxxx’)

1. A< 1 the weak coupling limit did not qualitatively alter one-loop findings.

2. Ry(A) is a small contribution. Kalagov et al., Nucl. Phys. B (2016)

Typical values of expansion parameter:
— in QED: A ~ 1072
— in Stat.Phys.: ¢ 2 1

— in Turbulence: ¢ 2 1 —4



The nonperturbative RG (NPRG)

The free energy is defined by the Legendre transformation:

P[@] = sup{j — W[j]} = J(2)® — W[J(@)],

where for an appropriate sourse we get:

_ oWlj]
= —

Jg=J

The functional Wj] = In Z[j] and

Z[j] = /Dcp exp{—S[o] +jo}.

Knowledge of the free energy is a solution of the problem.

Wetterich (1990s):

Construct a functional that interpolates
between an action S at the UV limit and
the full free energy at the IR limit.

The partition function of fast modes p > k:

241j) = [ Dopsrepl-Sle] + o}

The soft cutoff procedure: [suppresses slow modes]

/D(Pp>k = /Dcp exp{—zs/fc[cp]}

The cutoff term:

1

ASelel = 5 [ @) Rp)o(-p

P

The properties od Ry (p)

e Mass additive to slow modes:
Ri(p) ~ k*, p<<k

e IR limit:

e UV limit:



The effective average action

The effective average action:
Lp[®] = J(2)P — Wi [J(P)] — AS, [P
The functional Wy |j] = In Zy|j] and
Z|jl = chp exp{—S[@] — AS,[P] + jo}
New object meets the disered conditions:
[i=o[®] =T[®], Iyp-al®]=S5[P]

Applying a k-derivative to I'y leads us to the equation

1 —1
Ol = 5 Tr { (Fg) -+ Rk) 8kRk}

e

second derivative matrix

4.

The Wetterich equation is exact but
not exactly solvable.

A wide used approximation —
the field and derivative expansion.

The cutoff function may have an
arbitrary shape that meets the
necessary conditions.

Numerical outcomes weakly depend
on the cutoff.



The field and derivative expansion

The Euclidean action:

1
S = §t1’ (p(p2 + mg)(P + g% tr (p4 + %(tr (92)2,

The leading term of the derivative expansion:

1
Ly =5 tr (0®)* + Ui(p, o),

where invariants p, o are defined as

2

P

= tr ®? =trd* — =
P re=, o r N

Close to the transition SU(N) — SU(N/2) ® SU(N/2) @ U(1):

Ui(p,0) = Usir(p) + Uzie(p) 0 + O(07)

The cutoff function:

Ri(p) = (k* — p*)O(k* — p*)

=0,

f

tro =0

4 the flow equation A
d+1
8kU1kN]€ Zk2_|_M2
4 Uy
M2 _ Ul. ;
1 1:k T N P
M3 = Uy, + 20Uy,
\_ /

Litim, Phys. Rev. D (2001)



The full flow equation

System of coupled partial differential equtions:
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must be solved subject to the initial conditions at the UV scale

2

P
Ulk=p = myp + )\1,A?, Us.k=A = A2 A



Results of numerical solution

The free energy of the d = 3 system for the model parameters:
)\LA = A, /\Q,A = 10 A; mg(N = 4) = —0.272 AQ; mg(N — OO) = —0.063 A2.
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N =4

The model considered exhibits the first order phase transition for N > 2,
in agreement with the one-loop € expansion results.



Preliminary conclusions

e The matrix models considered undergo the fluctuation induced first-order
phase transitions which are revealed by means

1. the Borel resummation of e-expansion

2. the nonperturbative RG
Note! One-loop approximation properly predicts qualitatively picture.

e In particular, these results can be employed to describe large spin fermi
systems.



Dynamical critical behaviour

A typical feature of critical dynamics — critical slowing down:

—v 2 — dynamical critical exponen
trela:ration’vgzw‘T—Tc’ © = 00 dynamical critical exponent

The Landau model of a critical point: :
1. Ising model

g

1
§=5(Ve)? + 024 Bt T T

9 4! 2. liquid —vapor critical point
Dynamics of order parameter @ = @(t,z): 3. binary mixture etc.
noize
. 0=t
= 50 T 2 (e ) = 27 8(1 — s o)
Aims:

e Investigate IR asymptotics of Green (or thermodinamical functions)
e Obtain possible scaling regimes

e Calculate critical exponents - v, n, z



Turbulent motion
Fully developed turbulence:

L
Re:V——>oo
v

Universal spectrum of fluctuations (Kolmogorov):
E(k) ~ k=5/3

The Kraichnan model: velocity v; (¢, x) is a random field

1 kik; kik, a = 0 — incompressible fluid

0ij — 2 + « 12 ¢ = 4/3 — physical value

Dij = (ui(t, z)v;(t,x)) => Ld+C

Coupling with the velocity field:

Orp — Vi = Opp + (v;0;) @



Effective model

The Martin-Siggia-Rose action
Vasiliev, The Field Theoretic

05 1 o .
Susr =A0'Vio+ 0 — — X' @' + oD Y. Renormalization Group in Critical
VP T e @ PP TRt Behavior Theory and Stochastic

: Dynamics (2004
Green functions: y (2004)

(@...Q) ~ /D(pD(p’Dv(p...(pe_SMSR

Ansatz for the Wetterich equation:

0S 1 _
Ty =Xio' {Vi+ Ak (Oivi)} ¢ + 90’6—; — Yo' + §UiDij1Uja [r—n = Smsr
where: :
Sk = 52k (Vo) + Us(e)

Flowing “anomalous dimensions”:

"}/g = —k&k In Xk, ’)/,3;/ = —]{Zak In Yk, N — —k&k In Zk. z =2 — Nk=0 + ’Yli(:()



Results

The model contains three parameters: d - space dimensionality, ( and “com-
pressibility” «. We will consider the possible scaling regimes in (d, () plane at

given . There are 4 scaling regimes. . Rk ik
DEJ = ii kQ —l-(f}i kQ

Ld+C

e

2.0 Z ' ' e 20—
~
r N

one-loop € expansion Antonov, Phys. Rev. E (2009) /

20—

\ physical point:

—— d=3

¢ | v I ¢ mo | ol v A4 =43
o _ i “n |
II I |
[ a f : 1 I Urelazation ™ ‘fz
i ! d -a _ 1 - 2.0 3.0 d d.(](y ~ 2.265.0 2.0 3.0 d 4.0 o — 10 5.0
I. Gaussian fixed point. IV. NEW regime. Due to competition between turbulence
II. Pure A-model (turbulence is not relevant). and critical fluctuations the system may show a new stable

I1I. Pure turbulence (critical fluct. are not relevant). scaling regime, where zypw = 2/3.
Zwithout turbul. ~ 2.036 > zNEpw



Conclusion

e We employed the NPRG to analyse the impact of fully developed
turbulence on the scaling behaviour of critical (compressible) liquids.

e The new scaling regime was established.

e Numerical values of respective critical exponents are estimated.
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