

Status of Baryonic Matter at Nuclotron

BM@N Project

M.Kapishin

Complex NICA

Parameters of Nuclotron for BM@N experiment: E_{beam} = 1-6 GeV/u; *beams: from* p to Au; Intensity~10⁷ c⁻¹ (Au)

BM@N setup, séance 52 June 2016

- Deuteron beam (~5·10⁵ /cycle) with T_0 = 2.94 GeV / nucleon
- Tests and commissioning of GEM central tracker situated inside analyzing magnet \rightarrow 5 detectors 66 x 41cm2 + 1 detector 163 x 45 cm2
- only 3 hours of data taking

 \rightarrow recorded beam events and beam interactions with target, GEM detectors at reduced HV

 \rightarrow collected data without magnetic field and with reduced magnetic field (0.25 T)

Performance of GEM tracker in séance 52, June 16

5 middle size and 1 big GEM detectors Beam spot, detectors Products of interaction with target and are displaced to ±15 mm proton spectators / pile-up events in center

Beam

Beam profile in middle GEM detector

M.Kapishin

- Deuteron beam (10^{5} -3·10⁵ /cycle) with T₀= 4 GeV / nucleon
- Focus on tests and commissioning of GEM central tracker inside analyzing magnet \rightarrow 5 detectors 66 x 41cm² + 2 detectors 163 x 45 cm²
- Install and test one plane of Si detector for tracking
- Test / calibrate ToF, T0+Trigger barrel detector, full ZDC, part of ECAL Program:
- Trace beam through detectors, align detectors, measure beam momentum in mag. field of 0.3 0.85 T
- Measure inelastic reactions d + target \rightarrow X $\,$ in deuteron beam with energy
- T₀= 4.0 GeV / nucleon on targets (CH₂, C, Cu, Pb) in mag. field of 0.75 T
- Extract and trace to BM@N deuteron beam with maximal energy (4.6 GeV $_{\rm l}$ nucleon), measure beam momentum and inelastic reactions d + C \rightarrow X

M.Kapishin

BM@N experiment in séance 53, December 2016

Si detector

New detector components: 2 big GEMs, trigger barrel detector, Si detector, ECAL

barre

detector

M.Kapishin

GEM detectors for central BM@N tracker

Tests of GEM detector 163 x 45 cm²

Set of 5 GEM detectors 66 x 41 cm² prepared for cosmic tests

- for tracking in BM@N technical run in December 2016 used 5 detectors 66 x 41 cm² and 2 detectors 163 x 45 cm²
- for BM@N run in autumn 2017 plan to produce 6 more detectors 163
 x 45 cm2

M.Kapishin

GEM performance in December run

Profiles of beam inclined at different angles

Min bias d + Cu interactions

GEM detector efficiency in December run

Plane efficiency calculated using reconstructed tracks of beam inclined at different angles

M.Kapishin

Performance of DCH tracker in December run

N.Voytishin, V.Palchik, LIT

Development of silicon strip detector

M.Kapishin

- 2-coordinate Si detector X-X'(±2.5°) with strip pitch of 95/103 $\mu m,$ full size of 25 x 25 cm^2 , 10240 strips
- Detector combined from 4 sub-detectors arranged around beam, each sub-detector consists of 4 Si modules of 6.3 x 6.3 cm²
- One plane installed in front of GEM tracker in December 2016

3149

ToF system performance in December run

Yu.Petukhov, SNEO

Time resolution between ToF-400 and T0

Time resolution between ToF-700 and T0

M.Kapishin

ToF system performance in December run

Time resolution between ToF-

700 and ToF-400 chambers

Time resolution between two ToF-400 chambers

Time difference, chambers 0 and 1 Time difference, chambers 0 and 9 Time diff1 Time diff3 Entries 6181 Entries 3959 800 -0.02203Mean Mean 0.01238 1400 RMS 0.09178 0.1149 RMS 700 χ^2 / ndf 43.35/5 χ^2 / ndf 6.283/5 1200 Constant 1463 ± 27.2 795.5 ± 17.8 Constant 600 -0.02498 ± 0.00106 Mean 0.006416 ± 0.001675 Mean 1000 Sigma 0.0736 ± 0.0010 0.08946 ± 0.00154 Sigma 500 800 400 600 300 400 200 200 100 -0.2 -0.1 0 0.1 0.2 0.3 -0.3 -0.2 -0.1 0.3 -0.4 0 0.1 0.2 0.4 0.5 TOF400 1 - TOF400 2 TOF700 - TOF400

Time resolution of ToF-700 chamber ~65 ps

• Time resolution of ToF-400 chamber ~53 ps M.Kapishin BM@N experiment

M.Kapishin

CPC chamber design

Al. Vishnevsky

Plan to produce in LHEP and install in autumn 2017 two CPC chambers in front and behind ToF-400 to check their performance as Outer tracker for heavy ion beams

Cathode printed board #1

Trigger detectors: beam counters and barrel detector in December run

Trigger group, V.Yurevich

SiDet – Silicon Detector

Selection of events with activity in barrel detector: BD > 0, > 1 or forward detector (with beam hole) FD

Trigger barrel detector in BM@N setup

Trigger group, V.Yurevich

ZDC performance in December run

O.Gavrischuk, SNEO

Profile of deuteron beam in ZDC

ZDC response to deuterons and products of d+CH₂ interactions

M.Kapishin

Calibration of ZDC calorimeter

O.Gavrischuk, SNEO

- Collect deuteron beam data with ZDC at different positions
- Calibration of cell amplitudes to get beam energy in cluster
- Spread of energies reconstructed at different ZDC positions ~3%

Time schedule for BM@N project development

M.Kapishin

Concluding remarks and next plans

- Finally BM@N collected data to check efficiencies of sub-detectors and develop algorithms for event reconstruction and analysis
- Major sub-systems are operational, but are still in limited configurations: GEM, DCH, ToF-400, ToF-700, ZDC, trigger, DAQ, slow control, online monitoring
- New sub-detectors are putting into operation: Si detector plane, ECAL
- Low priority in getting beams and non-regular paying for contracts delayed project realization for about half of year

BM@N plans for 2017:

• **Technical run in February-March** with heaviest beams provided by laser ion source: C (O), make beam energy scan: 3.5, 4.0, 4.5 AGeV

BM@N setup: existing GEM tracker, modified trigger system, extended ToF-400, ToF-700, DCH, DAQ configurations, Si detector plane in full setup

• Technical run in November-December with beams provided by heavy ion source: Ar, Kr, extracted and traced to BM@N setup

BM@N setup: extended GEM tracker, trigger system, ToF-400, ToF-700; two new CPC chambers in front and behind ToF-400 M.Kapishin BM@N experiment

Thank you for attention!

M.Kapishin

Backup slides

M.Kapishin

Table 1. Beam parameters and setup at different stages of theexperiment

year	2016	2017 spring	2017 2019 autumn		2020 and later	
beam	$d(\uparrow)$	C, Ar	Kr	Au	Au, p	
max.inter sity, Hz	n1M	$1\mathrm{M}$	$1\mathrm{M}$	$1\mathrm{M}$	10M	
trigger rate, Hz	10k	10k	20k	20k	50k	
central tracker status	6 GEM half pl.	8 GEM half pl.	10 GEM half pl.	8 GEM full pl.	12 GEMs or 8 GEMs + Si planes	
experim. status	techn. run	techn. run	physics run	stage 1 physics	stage 2 physics	

Time schedule and requested resources for the realization of the project: Studies of Baryonic Matter at the Nuclotron (BM@N)

Detectors / subsystems / facilities	ADB2 items	Cost of components, kUSD / required resources	2017	2018	2019	2020	2021
Detector prototypes	6.1.1	130	30	30	30	20	20
Central GEM tracker	6.1.2	1920	470	610	630	190	20
Outer tracker	6.1.3	240	100	100	20	10	10
ToF system	6.1.4	260	220	10	10	10	10
ZDC calorimeter	6.1.5	50	10	10	10	10	10
T0 detector	6.1.6	60	20	10	10	10	10
Si detector	6.1.7	260	110	80	50	10	10
ECAL calorimeter	6.1.8	230	90	90	30	10	10
Trigger system	6.1.9	50	10	10	10	10	10
Recoil detector	6.1.10	50	10	10	10	10	10
STS detector	6.1.11	1830	150(*)	150(*)	200(*)	680(*)	650(*)
Experimental zone	6.2	280	80	80	80	20	20
DAQ system + computing	6.3	490	90	100	100	100	100
Control system	6.4	50	10	10	10	10	10
Total costs, kUSD JINR budget		5900	1400	1300	1200	1100	900
Nuclotron, hours		10500	1500	-	3000	3000	3000
Labor OP, hours		5000	1000	1000	1000	1000	1000
Labor KB, hours		2500	500	500	500	500	500

(*) plus resurces from Mega Science project and grants

M.Kapishin

Nuclotron and BM@N beam line

M.Kapishin

BM@N beam line

Beam envelopes at the BM@N area

Beam	Planned intensity of Nuclotron + booster (per cycle)				
p , d	5·10 ¹²				
12 C	2 ⋅10 ¹¹				
⁴⁰ Ar	2·10 ¹¹				
¹³¹ Xe	10 ⁷ at BM@N				
¹⁹⁷ Au	10 ⁷ at BM@N				

Targets: ¹²C,⁶⁴Cu,¹⁹⁷Au, liquid H₂,²H₂

Plans for extensive upgrade of BM@N beam line:

- \rightarrow new stable power supplies for dipole magnets
- \rightarrow stabilization circuits for existing power supplies for quadruples and dipoles
- \rightarrow non destructive beam position monitoring on movable vacuum inserts
- \rightarrow carbon fiber vacuum beam pipe inside BM@N from the target to the end

M.Kapishin

BM@N setup

BM@N advantage: large aperture magnet (~1 m gap between poles)

 \rightarrow fill aperture with coordinate detectors which sustain high multiplicities of particles

 \rightarrow divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum (p > 1-2 GeV/c)

 \rightarrow fill distance between magnet and "far" detectors with coordinate detectors

M.Kapishin

BM@N experiment

• Central tracker (GEM+Si) inside analyzing magnet to reconstruct AA interactions

- Outer tracker (DCH, Straw / CPC)
 behind magnet to link central tracks to
 ToF detectors
- ToF system based on mRPC and T0 detectors to identify hadrons and light nucleus
- ZDC calorimeter to measure centrality of AA collisions and form trigger
- Detectors to form T0, L1 centrality trigger and beam monitors
- Electromagnetic calorimeter for γ,e+e-

Tests of GEM detectors with cosmic particles

BMN GEM and DAQ groups

M.Kapishin

GEM tracker: Λ^0 , K^0_s reconstruction

Simulation d+C, 4 AGeV, 500k events

