
Deep subthreshold production of muon pairs and 
vector mesons: J/Psi, etc. at NICA energies 

A.A. Baldin (1), V.T. Kim (2), S.V. Kuleshov (3)
1 - LHEP JINR, Dubna

2 - NRC KI – PNPI, Gatchina & SPbPU, St. Petersburg
3 – UNAB, Santiago, Chile

In collaboration with 
J. Zamora Saa (UNAB),G. Pivovarov (INR RAS), 

G.D. Alekseev (JINR), A.S. Chepurnov (INP MSU) et al.

1



Outline:

n Nuclear structure functions at large X and 
cumulative processes 

n Flucton model:  hard nuclear quark sea at large X

n Proposal for FIxed Target at NICA EXperiment (FITNEX) 

n Summary

2

2



Motivation: Dense Nuclear Matter 
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Fig. 5. The phase diagram of strongly interacting matter.

low energies, such as those at the AGS, SIS, and at low energies at the SPS, and in the future at
FAIR and NICA [39].

At a special value of the baryon chemical potential and temperature, there is a triple point
where Hadronic Matter, the Quark–Gluon Plasma, and Quarkyonic Matter all coexist. From ex-
periment, Fig. 2, we estimate that this occurs for

µ
triple pt
B ≈ 350–400 MeV, T triple pt ≈ 150–160 MeV. (1)

This point is presumably near where the linear and the flat temperature regime in Fig. 2 intersect.
We argue in the following how this arises from a triple point.

In thermodynamics a triple point is the point in a phase diagram where three lines of first
order phase transitions meet. A common example is where a gas, liquid, and solid coexist at a
given value of the pressure and temperature. Since there are only first order phase transitions, no
correlation length diverges at the triple point. For example, in the phase diagram of water, the
phases of vapor, water, and ice all coexist at the triple point. There is also a critical point in the
phase diagram of water, but it is situated far from the triple point, at much higher temperature
and pressure.

The properties of strongly interacting matter at large density are characterized by several
order parameters. One is the thermal Wilson or Polyakov loop, which measures the degree of
deconfinement reached. This is strictly an order parameter in theories without quarks, or in the
limit of a large number of colors, Nc → ∞, if the number of flavors, Nf , is kept fixed. The second
is the chiral condensate as an order parameter for chiral symmetry breaking. Chiral symmetry
is an exact symmetry when there are two (or more) flavors of massless quarks. The last is the
density of baryons, which is an order parameter even in the large Nc limit, when Nf grows
with Nc [35].

Hadronic Matter is confined and exhibits chiral symmetry breaking. It is technically difficult to
define confinement for finite Nc for a finite number of quark flavors, since the potential that sep-
arates quarks is never linear at large distances. This argument has a precise meaning at zero Nf

or infinite Nc, or for zero temperature. Nevertheless, there should be a well defined region of
low baryon density and low temperature where the physical degrees of freedom are mesons.
This phase is also to a good approximation free of baryons since their densities, nB/M3

B ∼
e(µB−MB)/T ! 10−2 for typical values of µB and T not too close to the phase boundary.

The Quark–Gluon Plasma is deconfined with restored chiral symmetry, and has nonzero
baryon number density when µB &= 0. It is composed of quarks and gluons, although we note

L.McLerran & L.McLerran & R. Pisarski (2007)
V. Braguta et al. (2016), …



Cumulative Processes: definition

Cold models -> definition:

- Nuclear processes beyond one free-nucleon kinematics

- scaling property

-> 

Cumulative processes:

scaling nuclear processes with X > 1



GLAPD-evolution (RG-evolution) and Hard Factorization: 
Nuclear structure functions 
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Nuclear structure functions: 
GLAPD-evolution (RG-evolution) equations  
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EMC-ratio: ”nucleon” distributions
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EMC-ratio: ”nucleon” distributions
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Two basic sum rules for PDFs:
1. Momentum conservation
2. Baryon number conservation

Nuclear PDF cannot be a convolution of free nucleon PDF?

A.Efremov (1985-87), A. Efremov et al. (88)  



EMC-ratio for nuclear structure functions    

L. Frankfurt and M. Strikman, Hardnuclear processes and microscopic nuclear structure 269

the nonrelativistic constituent quark model with parameters fitted to reproduce the nucleon form
factor). An observation of a much larger value of p would signal the presence of large short-range
parton—parton correlations in the nucleon wave function.

At present there exist several pieces of information about (p,~, which are basically consistent with a
naive estimate (for average x):

(i) Production of leading hadrons in the current fragmentation region in the reaction  + N—+ 1’ +
+ h2 + X. The EM Collaboration analysed correlations in the transverse momentum plane between

the leading hadrons using the Lund model. They find that a reasonable description is reached for
(p,) —0.44 GeV/c at x —0.1—0.2 [21].This analysis is likely to overestimate (pj since it does not take
into account the QCD broadening of the p~distribution due to the gluon radiation in the initial state.

(ii) The p-dependence of the leading hadron production in the reaction  + N—~e’ + h + X. The
analyses [22]of this effect lead to (ps) —(0.3—0.4) GeV/c for x—0.1—0.2.

(iii) In Drell—Yan pair production the p~distribution of the  ~ pair is reasonably well described by
the QCD calculations which take into account the gluon radiation (the DDT form factor), see, e.g., ref.
[23].It appears that the agreement would be destroyed if (~~)exceeds 0.5GeV/c. Similarly, the p~
distribution of Xe-meson production is reasonably described by the gluon fusion model with the DDT
form factor [24].This can be considered as an indication that (P5)g also does not exceed 0.5 GeVI c.

3.7. Nuclear effects. Introduction

At the Paris (Rochester) Conference in 1982 the European Muon Collaboration (EMC) first
reported their observation of a difference between the structure functions F2 of heavy (Fe) and light
(D) nuclear targets for 0.05  x  0.65 (fig. 3.11) [25].The difference between the observations and the
expectations of the conventional Fermi motion calculations [26](see discussion in section 5) became
known as the EMC effect.

I I I I I
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_ II

::~ ~‘~‘

Fig. 3.11. Ratio ofnucleon structure functionsF~for iron and deuterium as measured by the EM Collaboration in 1983 125]. The solid curve is the
expectation of the Fermi motion models.
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Fig. 3.14. (b) Comparison of high-Q2 BCDMS data [34] with SLAC data [28, 44].

ref. [28]) that the A-dependence of RA(x, Q2) — 1 is practically the same for all x (fig. 3.18). As a
result, RA (x, Q2) — 1 can be fitted to a factorized form:

RA(x, Q2) — 1 f(A)q(x, Q2). (3.22)

At x ~ 0.3 the essential longitudinal distances z involved in the deep inelastic scattering off nuclei are
much smaller than the average internucleon distance in nuclei, z — (0.5—1) Im~x~ 0.7 fm (cf. the



Nuclear structure functions: effective nucleon distribution    

A.Efremov, A. Kaidalov, V.Kim, G.Lykasov, N. Slavin (1988) 

An immediate consequence of Eqs. (3,4) is the equality of average momenta fractions
of gluons and quarks in the nucleus and nucleon

< xG >A

< xG >N

=
< xq >A

< xq >N

(7)

This relation is in good agreement with BCDMS [5] data which are the most precise
nowadays, e.g. < xq >N2

/ < xq >D2
−1 = (0.7 ± 1.7 ± 1.0)%. The difference of average

momenta for other nuclei is also zero within the error bars (see Table 2 in Ref. [10]).
The relation (7) clearly contradicts the very popular rescaling hypothesis [11] in ex-

planation of the EMC–effect. In fact, the passage from nucleon to nucleus in these models
is equivalent to the growth of Q2 for which, according to QCD, < xG > increases and
< xq > decreases3.

In conclusion of this section let us stress once more that QCD evolution equations
just as relation (6) are results of the leading twist approximation. So, the relations (1)
and (3,4) do not include the nuclear screening which is, at least formally, a high–twist
effect [12, 13]. Some experimental observation of a significant Q2–dependence of FSn/FC

in the region x < 0.02 was known recently [14].

2. The EMC–effect. Let us see now what the EMC–effect means in the frame of
our approach. Let us assume that the functions TA determine, at least approximately, an
effective distribution of nucleons in nucleus and therefore they are mostly concentrated in
the region of α = 1 (i.e. in the region of zero internal momentum of a nucleon). Expanding
FN( x
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where < · · · > means integration over interval 0 < α < A. If one accept that FN ∼
(1 − x)k and k " 3, then x-dependence of the second and the third terms are the factors
−k[x/(1−x)] and k[x/(1−x)] · [(k−1)x/(1−x)−2] respectively. In the region of x ≈ 0.5
the second term is close to zero and to obtain the depletion of R from unity in this region
discovered by EMC one should have
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for the ratio R3 of the structure functions of xF3.
In addition, in the region x ≈ 0.5 the sea quarks are practically absent: therefore one

can expect here R3 " R2 and

δA " ∆A (more exactly 2

3
∆A) (11)

The relations (9) and (10), mean that the number of ”effective nucleons” in a nucleus
has to be larger than A, and the valence nucleons have to carry only a part of the total

3Another criticism of the hypothesis from QCD point of view can be found in Ref. [8].
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An immediate consequence of Eqs. (3,4) is the equality of average momenta fractions
of gluons and quarks in the nucleus and nucleon
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This relation is in good agreement with BCDMS [5] data which are the most precise
nowadays, e.g. < xq >N2

/ < xq >D2
−1 = (0.7 ± 1.7 ± 1.0)%. The difference of average

momenta for other nuclei is also zero within the error bars (see Table 2 in Ref. [10]).
The relation (7) clearly contradicts the very popular rescaling hypothesis [11] in ex-

planation of the EMC–effect. In fact, the passage from nucleon to nucleus in these models
is equivalent to the growth of Q2 for which, according to QCD, < xG > increases and
< xq > decreases3.

In conclusion of this section let us stress once more that QCD evolution equations
just as relation (6) are results of the leading twist approximation. So, the relations (1)
and (3,4) do not include the nuclear screening which is, at least formally, a high–twist
effect [12, 13]. Some experimental observation of a significant Q2–dependence of FSn/FC

in the region x < 0.02 was known recently [14].

2. The EMC–effect. Let us see now what the EMC–effect means in the frame of
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effective distribution of nucleons in nucleus and therefore they are mostly concentrated in
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3

nucleus momentum. In other words, the EMC–effect is the result of a repumping of a part
of momentum from valence quarks to sea quarks in the nucleus in comparison with free
nucleon.

Notice, that the shock produced by the discovery of EMC was due to the prejudice
that a nucleus is made of A nucleons and so the condition ∆A = 0 has to be imposed
on the distribution T S, which unavoidably results in R2(x ≈ 0.5) = 1, independent of
the form of T S. In this sense, the difference between T S and TNS (necessary to explain
the EMC–effect) leads to the irreducibility of the nuclear quark structure to the quark
structure of free nucleons.

In spite of generality, this approach allows one to draw a number of interesting con-
clusions:

i) It immediately follows from (9) that the ratio 4

R2(x " 0) =
∫ A

0

dα T S
A(α) = 1 + ∆A > 1 (12)

The most accurate measurement of BCDMS [5] shows a small ≈ 5% but definite excess
of the ratio over 1 in the region of small x, i.e. the same value as the loss of momenta
of the valence nucleons δA. This means a small number of particles of the non-nucleon
component which have to be heavy enough to supply the 5% repumping of the momentum
(e.g. ρ-mesons, NÑ–pairs or pions far off the mass shell).

ii) In addition to the internucleon sea there is a small, ≈ ∆A, but hard enough ”col-
lective sea” of quark–antiquark pairs in nuclei.

Using (1) and (3) it is easy to obtain for the sea

OA(x, Q2) ≡ ΣA − VA

=
∫ A

x
dα TNS

A (α)ON

(
x

α
, Q2

)
+
∫ A

x
dα

[
T S

A (α) − TNS
A (α)

]
ΣN

(
x

α
, Q2

)
(13)

where the first term comes from the internucleon sea, which rapidly decreases with in-
creasing x, and the second term comes from a ”collective sea”, O′

A, which is hard since
its center of gravity is

αO′ =
< α(T S

A − TNS
A ) >

< T S
A − TNS

A >
=

δA

∆A

≈ 1 (14)

For pions on the mass shell this number is mπ/mN ≈ 1/7. That is the reason why the
repumping of the momentum into the pions [15] gives no satisfactory description of the
data in the region of small x (too many pions are needed to supply the 5% repumping).

iii) The place of intersection R2(x0) = 1 does not depend on the sort of nucleus and is
at x0 ≈ 0.3. Really, if there are no screening and light particles in nuclei, T S

A(α) has to
be smooth enough in the region of small x. Using then the first two terms of (8) for R2

it is easy to find
x0

1 − x0

"
1

3

(

1 −

∫ x0

0 dα αT S
A (α)

∫ x0

0 dα T S
A(α)

)−1

The ratio of integrals in the r.h.s. is in the interval [0, x0] and thus 0.25 < x0 < 1/3. This
feature of the ratio R2 has been well confirmed experimentally [16] with x0 = 0.278±0.010.

4Recall that the screening phenomena are disregarded here
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Nuclear structure functions: extra hard nuclear sea    

Extra quark sea distribution in nucleus 
is hard as valence quark distribution (!):
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A.Efremov, A. Kaidalov, V.Kim, G.Lykasov, N.Slavin (1988) 

Extra quark sea distribution in nucleus
is due to momentum “repumping”   
from valence quarks to sea quarks and gluons

ΔA ~ few percents



Nuclear structure functions at large X: 
multiquark fluctons for cumulative processes  

Quark “fluctons”:
A.Efremov (76), V.Lukyanov, A.Titov,  V.Burov (77)

A. Kaidalov, A.Efremov, V.Kim, G.Lykasov, N.Slavin (1988)

- Hard quark sea at X > 1: SA(x) ~ SN (x) + ΔA VA(x)

- Flucton fragmentation based on quark-gluon strings model

Nuclear structure functions at large X 
in LO and NLO with TMC and  higher twists 
VK (1991, 2017)
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Nuclear structure function ratio in lepton DIS at X > 1   

JLAB CLAS Coll., K. Egiyan (06)

would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RArad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within$ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RArad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RArad in Eq. (2) event by event for 0:8< xB < 2. Since there
are no theoretical cross section calculations at xB > 2, we
applied the value of RArad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RArad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RArad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs
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FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,
(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.
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Nuclear structure function in lepton DIS at X > 1   

JLAB E02-019 (2012), <Q2> = 2.9 GeV2

JLAB CLAS (2006) – no IS corrections, <Q2> = 1.6 GeV2



Nuclear structure functions: extra hard nuclear sea    

Extra quark sea distribution in nucleus 
is hard as valence quark distribution:

h...i ⌘
AZ

0

... dy

R ' hT i+ h(1� y)T i
| {z }

h�i

x
F

0
N
(x)

FN(x)
+

1

2
h(1� y)2T i
| {z }

h�2i

x

"
F

00
N
(x)

FN(x)
x+ 2

F
0
N
(x)

FN(x)

#

FN ' C(1� x)k, k = 3

R =
FA

FN

= 1� h�i kx

1� x
+

h�2i
2

kx

1� x

 
(k � 1)x

(1� x)
� 2

!

+ . . .

x ' 0.5

R(0.5) = 1� h�i k = 1��A

h (1� y)T i � > 0

1� h y T i = � > 0

h y T i = � < 1

q̃
S

A
= (T S � T

NS) qS .

O
0
A

' �A · TNS

A
⌦ VN

Fk(y) = Ck y
Ak (k � y)Bk

FA(y) = ⌃A

k=1 PkFk(y)

A.Efremov, A. Kaidalov, V.Kim, G.Lykasov, N. Slavin
(1988) 

The nuclear extra quark sea distribution is 
small at x < 1,
but it is dominant at x > 1 !



Hard probe cumulative processes: 
at high pT processes and heavy quarks production    

Cumulative high-pT processes in pA:
A.Efremov (76-78) 
A.Efremov, V.K., G.Lykasov (1986) quark rescattering included
V.Burov, L.Kaptar, A.Titov (1986) 

Cumulative MMT-DY pairs and J/Psi production in pA
N.Zotov, V. Saleev (90-91) 



Cumulative proceess: superscaling ! 
Ed3σ/d3p

A.Efremov, A.Kaidalov, VK,
G.Lykasov, N.Slavin (1988)
prediction for
pure “sea” particles:
K-

antiproton

equal slopes:
superscaling!
ITEP data: 
Leksin et al. (1989)
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ядер быстро, за время прямой реакции 10

 

−

 

23

 

 с. Како-
му процессу обязано образование этих нуклонов?

При больших энергиях налетающих частиц – а
показанный спектр, напомним, был получен при
энергии налетающих протонов 7,5 ГэВ – обычно
считалось, что налетающий нуклон взаимодействует
с отдельным, почти свободным нуклоном ядра (что
хорошо согласуется с высказыванием о том, что ядра
состоят из нуклонов, кстати сказать из виртуальных
нуклонов). Детальные эксперименты, которые я не
буду здесь рассматривать, показывают, что, строго
говоря, упомянутая картина верна лишь в опреде-
ленных условиях. А в нашем случае приведен спектр
нейтронов, вылетающий в лабораторной системе
координат назад, куда, согласно закону сохранения
энергии и импульса, вылет нейтронов запрещен.

Рассмотрим простую задачу столкновения двух
шариков одинаковой массы, а нуклоны с точки зре-
ния законов сохранения энергии и импульса стал-
киваются как шарики. Закон сохранения импуль-
сов дает в векторной форме
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 – импульс налетающего шарика на покоя-
щийся шарик, 
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 и 
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 – импульсы шариков после
столкновения. В силу закона сохранения энергии

то есть треугольник 
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p

 

2

 

 

 

прямоугольный, вокруг
него можно описать окружность, на которой лежат
концы векторов импульсов шариков после разлета,
а это значит, что угол разлета двух шариков 90

 

°

 

, мак-
симальный угол вылета одного шарика относитель-
но направления 

 

p

 

0

 

 составляет 90

 

°

 

, и то с нулевым
импульсом. Релятивистское рассмотрение превра-
щает окружность в эллипс и лишь усугубляет выво-
ды. Любые неупругие процессы также делают макси-
мальный угол вылета лишь меньше. Итак, нейтрон в
рамках модели столкновения с покоящимся нукло-
ном не может вылететь назад в лабораторной систе-
ме координат. Наблюдаемые быстрые нейтроны,
называемые кумулятивными, имеют другое проис-
хождение.

Шарик отлетает назад при столкновении со
стенкой или шариком, который тяжелее его. Чем
тяжелее шарик-мишень, тем больший импульс или
большую энергию может иметь шарик, отлетевший
назад. Можно вычислить минимальную массу объ-
екта, с которым должна столкнуться налетающая
частица, чтобы под данным углом могла вылететь
кумулятивная частица с данной энергией. Эта мас-
са, нормированная на массу нуклона, называется
кумулятивным числом. Итак, кумулятивные ней-
троны могут образоваться и образуются при столк-
новении налетающей частицы с несколькими ну-
клонами ядра.

p0
2 = p1

2 p2
2,+

 

Раньше было дано строгое определение кумуля-
тивной частицы: это такая частица, которая не мог-
ла образоваться в силу законов сохранения энергии
и импульса при взаимодействии налетающей части-
цы со свободным нуклоном. Полезно, наверное,
пояснить происхождение термина 

 

кумулятивная
частица

 

, ее связь с более привычными понятиями

 

кумулятивный снаряд

 

, 

 

кумулятивная струя

 

. Латин-
ский глагол 

 

cumulo

 

 в основе слова (накапливать) оз-
начает накопление энергии объекта на какой-то ча-
сти объекта. В тяжелом снаряде его часть после
столкновения имеет энергию большую, чем эта
часть имела в движущемся снаряде, соответственно
она имеет и большую скорость, чем снаряд. А это
значит, что в системе координат, где покоится сна-
ряд, появится частица, летящая в сторону, противо-
положную движению мишени. В рассматриваемом
случае роль снаряда выполняет ядро, а движущийся
назад в системе координат, где ядро покоится, ней-
трон выполняет роль кумулятивной частицы.
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На рис. 2 показаны спектры кумулятивных про-
тонов, 

 

π

 

+

 

- и 
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-мезонов, K
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-мезонов и анти-
протонов, вылетающих из ядра меди под углом 119
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Рис. 2.

 

 Зависимость инвариантных функций раз-
личных кумулятивных частиц от их величин 

 

α

 

. Ниж-
няя шкала абсцисс – импульс кумулятивных про-
тонов при соответствующем 

 

α

 

.

1,5

X



Cumulative processes (direct nucleus fragmentation): 
Carbon beam @ NRC KI - IHEP (Protvino)  

beam:             C12 20 GeV/N forward fragmentation
fixed targets: C12, Pb207

FODS-2, Bogolyubsky et  al. (2017) 

21.09.2016 Baldin ISHEPP XXII 7

Yields, p, π-, к- 



Double cumulative processes
KASPIY, MARUSYA, etc.
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Double cumulative deep subthreshold 
antimatter production

J.Carroll Nucl. Phys.  A488 (1989) 2192.
A.Shor et al. Phys. Rev. Lett. 62 (1989) 2192.
A.A.Baldin et al. Nucl. Phys., A519 (1990) 407.
A.A.Baldin et al. Rapid Communications JINR, 3-92 (1992) 20.
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J/ψ and MMT-DT muon pair production 

At large X quark-antiquark subprocess is dominant:

nuclear sea at large X can be tested

IO R. Vogt et al. / J/$ production 

The number of active flavors n, is 4. The cutoff A is fixed at 0.2 GeV and the 
mass scale is set at m = m,,#. 

Let x,, be the fractional momentum carried by the projectile partons and x, be 
the fractional momentum of the target partons. We introduce the functions 
G,(x,), q,i(x,), B,i(x,) and G,(x,), q,i(x,), q,i(x,), the gluon, quark, and anti- 
quark distribution functions within the projectile and target hadrons respectively. 
The quark flavors are labeled by the subscript i. The hadroproduction cross 
section is then described, according to the QCD factorization theorem, as a 
convolution of the quark-antiquark annihilation and gluon-gluon fusion cross 
sections. In subsect. 3.3 we will modify the structure functions to account for the 
presence of nuclear matter. We introduce the function [17] 

Hpt(xp, x,; m2) = GJ Xp)G,( x,)m(gg + cc; m2) 

+ C (Spi(xp)qti(xl) +~pi(Xp)qti(xO)a(q~ +c’;m2)~ 
i=u,d,s 

where we sum over light quark flavors relevant to CE production. If y is the 15 
rapidity in the center of mass frame and 6 is the center of mass energy, the 
differential cross section for free CIZ production by parton fusion is 

da, 
----(pt+d;m2)=~H,,(x,,x,;m2). dm2 dy (8) 

The invariant mass of the pair may be related to the total energy in the 
nucleon-nucleon center of mass frame through m2 =xpxls = r2s. The momentum 
fractions xP and x, are related to the rapidity through x,,~ = r exp( &y), and to the 
forward momentum fraction of the CE pair by xy =xP -x,. We now change 
variables to xt and r so that 

dy$ = J& H&,s x,; x&s) 3 (9) 

where xP , = $( fx, + @TG,. 
To apily this cross section to the production of CE bound states, we must 

integrate the free production cross section over r from the cc production thresh- 
old, ri = 2mJfi, to the open charm threshold, r2 = 2m,/6. Then 

(10) 
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- Heavy quark mass or large muon pair mass
ensures quark-gluon degrees of freedom 

- Large x production comes from quark-antiquark annihilation



Nuclear structure functions: extra hard nuclear sea    

Extra quark sea distribution in nucleus 
is hard as valence quark distribution:
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Qualitative Predictions:

1. Cumulative ‘sea’ hadron production K- and antiprotons
is hard as the ‘valence’ hadrons

2. JLAB PDF ratio should be qualitatively the same 
for nuclear antiquark PDF at X > 1  

3. Matveev-Muradyan-Tavkhelidze-Drell-Yan (MMT-DY)
lepton pair and j/Psi production at X > 1 
is enhanced to compare SRC

ΔA ~ few percents



J/ψ production in AA-collsions

J/Psi suppression in central AA-collisions
T.Matsui & H.Satz (1986)

J/Psi suppression in central AA-collisions due to fluctons
A.Efremov & V.K., S.Shmakov, V.Uzhinsky (1989)



FITNEX: Deep subthreshold J/Psi-production 
in AA-collisions

•n Nuclear PDFs with multiquark fluctons constrained by
• - QCD factorization and GLAPD evolution equations
• - EMC effect         
• - Cumulative processes with K-, antiproton production at X > 1

->  hard nuclear antiquark sea at X > 1

n The hard nuclear antiquark sea at X > 1 can be tested by
deep subthreshold MMT-DY lepton pair and J/Psi production at X > 1
with the proposed Fixed Target at NICA Experiment (FITNEX)



FITNEX: Deep subthreshold J/Psi-production 
in AA-collisions

n The hard nuclear antiquark sea at X > 1 can be tested by
deep subthreshold MMT-DY lepton pair and J/Psi production at X > 1
with the proposed Fixed Target at NICA Experiment (FITNEX)

NICA fixed target: beam dump with heavy ion beam:
Au+W -> J/ψ X -> μ+μ- X  

Fitnex Notes 27 March 2020  A.A. Baldin, V.T. Kim, S.V. Kuleshov

J/Psi spectrum in xF Au+W
Au 4 GeV/N NICA
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Proposal for FIxed Target at NICA Experiment (FITNEX)
A+A -> J/ψ X -> μ+μ- X

25

25

Very preliminary!!! Detector.
Compact muon spectrometer & active beam dump.
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Possible FITNEX location layout



Possible FITNEX location layout



FITNEX Superconductive Solenoid•
•
•
•

Соленоид

Длина 2500 (2,5 метра)

Внутренний диаметр 1000 (1 метр)

Наружный диаметр 1400 мм.

Постараюсь узнать форму и максимальную величину поля. 

Это моделировалось и измерялось, но пока у меня точных данных нет.



Tungsten beam dump
Very preliminary!
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Very preliminary! Muon spectrometer.
• The spectrometer is placed around the superconductive 

magnet. There could be 2 options: magnetic field is 
concentrated in the muon spectrometer; solenoidal 
magnetic field distributed uniformly inside the magnet, 
external part of the spectrometer is combined with return 
yoke.

• The spectrometer should have TOF subsystem, we suppose 
that one layer of TOF system will be inside the magnet, the 
second is outside magnet. TOF could consists from Sc. Pads 
with SiPMs.

• MDT (monitored drift tubes with 10-30 mm diameter) could 
be a muon detector.

• Straw tubes could be used inside the magnet.



Very preliminary! Muon Spectrometer 
and Magnet.

Superconductive solenoid

“CMS style” Magnetic field is concentrated
in the Muon Spectrometer.

A part of the Muon Spectrometer
is made from nonmagnetic materials

Muon detectors with
iron



Very preliminary!!! Detector. Calorimeter 
for central interactions selection.

D 
40

0

600 500

Calorimeter W80Cu20 +Sc

Absorber W80Cu20

The calorimeter should be optimized for about 100 GeV energy deposition in the calorimeter 
from central events and about “0” GeV for peripheral events. Calorimeter: 5mm W80Cu20+ 5 
mm Sc. Plastic+WLS fibers. The calorimeter thickness is 150 mm. Energy resolution is about 
60%/√E.



Some preliminary simulations with 
FLUKA. Au beam 4 GeV/c/nucleon 

• Beam dump without the hole. 

Neutron Fluence (part/cmq/pr)
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Some preliminary simulations with 
FLUKA. Au beam 4 GeV/c/nucleon 

• Beam dump without the hole. 
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Modified beam dump with 
calorimeter. 



Some preliminary simulations with 
FLUKA. Au beam 4 GeV/c/nucleon 

• Modified beam dump
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Deep subthreshold production at NICA:
Testing the Hard antiquark sea in nuclei
Cold Dense Nuclear Matter? 

Cumulative hadroproduction at NICA can be studied 
at BM@N and SPD

Usual main obstacles, which can be avoided with FITNEX:
- small cross sections
- huge combinatorial background from high multiplicities

Fixed Target at NICA Experiment with muon pairs from deep 
subthreshold MMT-DY and J/Psi production:

Beam dump -> higher rate at smaller background 

Expected rates: ~ hundred muon pairs per hour at 106/s
Au+W-> μ+μ- X 4 GeV/n 
Au+W -> J/ψ X -> μ+μ- X



Summary

n The hard nuclear antiquark sea at X > 1 can be tested by
deep subthreshold MMT-DY lepton pair and J/Psi production at X > 1
with the proposed Fixed Target at NICA Experiment (FITNEX)

n The proposed FITNEX-SPD experiment can be: 

- an extension of the pioneering works at JINR
on cumulation production for new region and new processes

- a substantial addition to the NICA experiments 

- a natural extension of SPD to fixed target studies 



Nuclear hard antiquark sea: key features•
• n Nuclear PDFs with multiquark fluctons constrained by
• - factorization and GLAPD evolution equations:
• - EMC effect         
• - Cumulative processes with K-, antiproton production X > 1

n Cold Dense Nuclear Matter study 
• with nuclear structure functions at X > 1:

hard (anti)quark sea at X > 1 

• - deep subthreshold MMT-DY lepton pair and J/Psi production X > 1  
• - CP-violating observables

• n Flucton model and Cold Dense Nuclear Matter:
• phase transition?
• chemical potential?
• isoscalar dominance?
• quarkyonic phase?

•
•


