CSC Alignment

- Closest hit approach
- All hits approach
- CSC case
- CSC hits cut
- New fit method
- New alignment results

Closest hit approach

Aligned position

Unaligned position

\star - wrong hit, \star - right hit, • - track extrapolation

- We can lose right residuals
- If we far away of aligned position, all residuals can be wrong

BM@

All hits approach

Aligned position

Unaligned position

\star - wrong hit, \star - right hit, • - track extrapolation

- We do not lose right residuals
- If the number of wrong hits is large, we will have a large combinatorial background
- Due to large background we need to use more sophisticated fitting algorithms

CSC case

太 - hit, • - track extrapolation

- Average number of combination without 1-digit clusters in hits <3
- Closest hit and all hits approaches in this case seem to be equal

CSC Hits cut

- Average number of trackshits combination per event >8

Remove hits with at least 1 cluster containing 1 digit

BM@

New fit method

- $M_{\text {dean }}^{\text {Distrib }}-$ Mean $_{\text {Gaus }}$ variates more than $\pm 1 \mathrm{~mm}$
- Use gaus+pol0 to fit slices by T_{x}

BM@

New alignment results

Vasilii Plotnikov, 14.12.2020

BM@

New alignment results

- To get new aligned CSC position following shifts are implemented:

$$
\begin{aligned}
& -Z_{\text {Alllits }}=Z_{\text {GEM }}-0.88, \mathrm{~cm}\left(Z_{\text {Closesthit }}+0.13 \mathrm{~cm}\right) \\
& -X_{\text {Alllits }}=X_{\text {GEM }}-0.213, \mathrm{~cm}\left(X_{\text {Closesthiit }}\right) \\
& -Y_{\text {Alllits }}=Y_{\text {GEM }}+0.085, \mathrm{~cm}\left(Y_{\text {Closesthit }}\right)
\end{aligned}
$$

- Residual misalignment by X and $Y<200 \mu m$
- For the CSC Closest Hit approach, the alignment is simpler and gives the same results

BM@N

BM@N

Backup

Data without field

- Run 4648
- Argon beam
- Al target 3.3 mm wide

BM@N

Previous result, GEM-CSC tracking

вм@м Residuals without field, X and X^{\prime}

 $\mathrm{Z}_{\text {best }}+1.5 \mathrm{~cm}$

- Residuals for Z, shifted by 1.5 cm relative to the "optimal" Z
- Negative slope is visible for X and X^{\prime}
- The slopes are different and correspond to the difference in position along $Z \Delta Z \approx 6.5 \mathrm{~mm}$

вм@NResiduals without field, X и X'
 ,

best

вм@п Residuals without field, X и $\mathrm{X}^{\prime}, \mathrm{Z}_{\text {best }}$

- Residuals were calculated by discarding the CSC hit and extrapolating the track from GEM
- Sigma of residuals about 4 mm
- Zef planes X and X 'are separated by several millimeters in different directions relative to Zcsc (X ' is closer to the target in Z)
- Zcsc, implemented in reconstruction, in the middle between X and X^{\prime}

BM@N

Si-GEM-CSC extended tracking

вм@л \quad Residuals w/o field, X and X^{\prime},

30 - Residuals for Z, shifted by ${ }^{20} 2 \mathrm{~cm}$ relative to the "optimal" Z

- Positive slope is visible for X and X^{\prime}
- The slopes are close to each other

вм@л Residuals w/o field, X and $\mathrm{X}^{\prime}, \mathrm{Z}_{\text {best }}$

Vasilii Plotnikov, 14.12.2020

вм@N Residuals without field, X и $\mathrm{X}^{\prime}, \mathrm{Z}_{\text {best }}$

- To get new aligned CSC position following shifts are implemented:

$$
\begin{aligned}
& -Z_{\text {new }}=Z_{\text {old }}-1.01, \mathrm{~cm} \\
& -X_{\text {new }}=X_{\text {old }}-0.213, \mathrm{~cm} \\
& -Y_{\text {new }}=Y_{\text {old }}+0.085, \mathrm{~cm}
\end{aligned}
$$

- Sigma of residuals about 5.3 mm (about 1 mm more than before)
- The slopes for the X and X ' planes are close to each other
- The difference in slopes corresponds to a displacement along Z about $200 \mu \mathrm{~m}$

вм@н Displacement of X and X^{\prime} planes

- X and X ' plane displacement issue not reproduced
- The possible reasons are following:
- New tracking
- More accurate track selection (≥ 2 Si hits, ≥ 3 GEM hits)
- Smaller binning
- Using the same $X^{\wedge} X^{\prime}$ angle in ResidOk as in the reconstruction (influence <100 $\mu \mathrm{m}$)

вм@н Residuals w/o field, X and X^{\prime}, Z best

- Residuals vs tangent in XZ plane with "prof" option
- Errors are the errors of the mean
- The discrepancy with the alignment results using the "colz" option is about 1 mm

