Update on neutral meson and dielectron studies in BiBi@9.46

V. Riabov

Outline

- Update on the ECAL efficiency with a limited acceptance
 - \checkmark for neutral mesons
 - ✓ for (di)electrons
- S/B vs. significance for dielectrons

ECAL acceptance

ECAL geometry, last meeting

- Full configuration: (25 sectors in azimuth with full pseudorapidity coverage; 25 half-sectors)
- Realistic configuration: 8 full sectors, 8/25 = 0.32 of the full acceptance
- At the last meeting we discussed the following two options:

• Two options are not ideal for the neutral meson measurements

V. Riabov, PWG4-ECAL Meeting, 29.12.2020

ECAL geometry, today

- Full configuration: (25 sectors in azimuth with full pseudorapidity coverage; 25 half-sectors)
- Increased number of variants:

Efficiencies for π^0 and η

• π^0 fractional efficiencies: BiBi@9.46, realistic vertex distribution

• η fractional efficiencies: BiBi@9.46, realistic vertex distribution

- Loss of efficiency is >> than just a geometrical factor of 0.32, especially at $p_T < 1-2$ GeV
- Option #1 shows strong p_T dependence of efficiency
- Option #2 has zero efficiency for $\pi^0(\eta)$ at $p_T \le 100(300)$ MeV/c

Sampling fraction for π^0 and η

• π^0 fractional efficiencies: UrQMD, BiBi@9.46, realistic vertex distribution

• η fractional efficiencies: BiBi@9.46, realistic vertex distribution

- Options #4 and #5 are the most balanced for neutral meson measurements:
 - ✓ open up acceptance at low p_T , down to ~ 50 MeV/c for π^0 and ~ 150-200 MeV/c for η
 - \checkmark moderate efficiency at intermediate p_T

Reconstructed peaks, π^0

- π^0 fractional efficiencies: UrQMD, 10M minbias BiBi@9.46, realistic vertex distribution
- Same statistics for all options

• Options #4 #5 provide better signal significance at $p_T \sim 100 \text{ MeV/c}$

Dielectrons vs. ECAL acceptance

- ECAL is used to identify tracks that are matched to the ECAL clusters (E/p, time-of-flight)
- ECAL acceptance does not affect the (di)electron efficiency, only purity & efficiency
 - ✓ 10 M minbias BiBi@9.45 (UrMQD v.3.4) events, noID, TPC&TOF or TPC&TOF&ECAL

• Lets see what happens with (di)electrons when ECAL is used to identify electrons at $p_T > 200 \text{ MeV/c}$

Acceptance for dielectrons, p_T^{ee} > 200 MeV/c

• Fractional yields: UrQMD, BiBi@9.46, smeared vertex, $p_T^{single e\pm} > 200 \text{ MeV/c}$

- Fractional yields increase since ECAL reduces efficiency at low p_T^e and cleans-up hadron contamination at high p_T^e
- No obvious difference between the Options #1,2,3 (4-6)

Acceptance for dielectrons, p_T^{ee} > 200 MeV/c

• M_{ee} yields: UrQMD, BiBi@9.46, smeared vertex, $p_T^{single e\pm} > 200 \text{ MeV/c}$

 M_{ee} measured/reconstructed with eID in the TPC&TOF&ECAL; M_{ee} true electrons: among them M_{ee} with π^0 Dalitz, M_{ee} with conversion, M_{ee} with η Dalitz

• No obvious difference between the Options #1,2 (3-6)

Acceptance for dielectrons, p_T^{ee} > 200 MeV/c

• M_{ee} yields: UrQMD, BiBi@9.46, smeared vertex, $p_T^{single e\pm} > 200 \text{ MeV/c}$

 M_{ee} measured/reconstructed with eID in the TPC&TOF&ECAL; M_{ee} true electrons: among them M_{ee} with π^0 Dalitz, M_{ee} with conversion, M_{ee} with η Dalitz

• No obvious difference between the Options #1,2 (3-6)

Summary

- Options # 4,5 look most promising for neutral mesons \rightarrow day-1 measurements
- Do not observe any difference between the Options for dielectron measurements

S/B for dielectrons

S/B, comparison with previous results

AZ

Figure 15: Reconstructed invariant mass of electron-positron pairs and signal-to-background ratios in invariant mass bins. Also shown are the integrated signal-to-background ratios for invariant mass values of 0.2-1.5 GeV/ c^2 .

Detector acceptance $ \eta $		$ \Delta \eta_{e^+e^-} $	Signal	S/B, %	$S/B, \% (R_{pipe} = 20 \text{ cm})$
	< 1.0	-	13025	6.8	10.7
	< 0.5	-	3754	10.1	12.7
	< 1.2	< 1.0	14198	8.2	13.2
	< 1.2	< 0.5	8616	9.4	15.7
	< 1.2	< 0.25	4531	9.6	16.8

• Previous analysis reports better S/B ratio:

VR

- ✓ AZ: S/B = 0.068 for 0.2-1.5 GeV/ c^2
- ✓ VR: S/B ~ 0.022 for 0.2-1.5 GeV/ c^2

S/B, different cuts: M_{pair}

• $M_{pair} > 0.2 \text{ GeV/c}$: tag and reject all electron track candidates that form a pair with $M_{ee} < 0.2 \text{ GeV/c}$ with any other electron track candidate in the event

Omega (s/sqrt(b)): 2.45081 Phi (s/sqrt(b)): 1.01321 LMR (s/sqrt(b)): 0.469486 S/B ratio improved by 35%,

but signal significance have not changed

S/B in 0.2-1.5: 0.0310112

Omega (s/sqrt(b)): 2.49616 Phi (s/sqrt(b)): 0.98441 LMR (s/sqrt(b)): 0.463362

= 16

S/B, different cuts: asymmetry

• $\sqrt{p_T^{e-}p_T^{e+}} > 0.3$: a low-p_T electron must pair only with a high-p_T electron

Omega (s/sqrt(b)): 2.45081 Phi (s/sqrt(b)): 1.01321 LMR (s/sqrt(b)): 0.469486

but signal significance have not changed Omega (s/sqrt(b)): 2.48839 Phi (s/sqrt(b)): 1.01321 LMR (s/sqrt(b)): 0.47154

S/B, different cuts: asymmetry

• $\sqrt{p_T^{e^-} p_T^{e^+}} > 0.3$: a low- p_T electron must pair only with a high- p_T electron

- The cut rejects ~ 50% of the total signal, 60% of e- η , 75% of e- π^0 and e-conversion pairs
- Redistribution of pairs for from different sources at low masses

S/B, different cuts: M_{pair} && asymmetry

• $M_{pair} > 0.2 \text{ GeV/c } \&\& \sqrt{p_T^{e-} p_T^{e+}} > 0.3$

19

S/B, different cuts: going to extremes

• $M_{pair} > 0.2 \text{ GeV/c } \&\& \sqrt{p_T^{e-} p_T^{e+}} > 0.4$

S/B in 0.2-1.5: 0.0228562

Omega (s/sqrt(b)): 2.45081 Phi (s/sqrt(b)): 1.01321 LMR (s/sqrt(b)): 0.469486

S/B ratio improved by x 3,

but signal significance have not changed or even decreased

S/B in 0.2-1.5: 0.067297 \rightarrow as in previous ANA

Omega (s/sqrt(b)): 2.33164 Phi (s/sqrt(b)): 0.993915 LMR (s/sqrt(b)): 0.436604

Summary for comparison

- S/B can be maid many factors larger with the specific analysis cuts
- Larger S/B ratio does not mean better signal extraction.
- Focus is on optimization of the signal significance !!!