ЭКСПЕРИМЕНТАЛЬНЫЙ КОМПЛЕКС НА БАЗЕ БЫСТРЫХ ОЦИФРОВЩИКОВ ФОРМЫ ИМПУЛЬСА В СОСТАВЕ ДЕТЕКТОРА БОРЕКСИНО ДЛЯ РЕГИСТРАЦИИ НЕЙТРИННОГО ИЗЛУЧЕНИЯ ОТ АСТРОФИЗИЧЕСКИХ ИСТОЧНИКОВ

> Выступающий: Г.А. Лукьянченко Руководитель: к.ф.-м.н. Л.А. Литвинович

Национальный исследовательский центр «Курчатовский институт»

ОИЯИ, 15.05.2017

- Разработка и создание экспериментального комплекса на базе быстрых оцифровщиков формы импульса с гибкой триггерной логикой (Курчатовский электронно-измерительный комплекс, КЭИК), исключающей мёртвое время, в составе Борексино для решения задач нейтринной астрофизики в диапазоне энергий 1÷100 МэВ.
- Разработка и реализация на основе данных КЭИК нового метода классификации событий в жидко-сцинтилляционном детекторе Борексино, идентификации космических мюонов, сцинтилляционных и шумовых событий с помощью обучаемых алгоритмов. Разработка алгоритма интеграции данных КЭИК в единую структуру анализа Борексино.
- Измерение по данным КЭИК и других подсистем Борексино параметров удельного выхода и средней множественности нейтронов в жидком органическом сцинтилляторе на основе псевдокумола под воздействием потока космических мюонов на глубине 3800 м водного эквивалента.
- Измерение параметров наработки радиоактивных космогенных изотопов (¹²B, ¹²N, ⁸He, ⁹Li) в жидком органическом сцинтилляторе на основе псевдокумола под воздействием потока космических мюонов на глубине 3800 м водного эквивалента.

Эксперимент Борексино

Детектор

- Глубина: 3800 м.в.э.
- Сцинтиллятор: РС + 1.5 г/л РРО
- Масса мишени: 278 т
- Радиус мишени: 4.25 м
- Количество ФЭУ: 2212
- Содержание ²³⁸ U и ²³² Th в сцинтилляторе не превышает 10⁻¹⁸ г/г
- Внешний детектор: 2100 м³ воды, 208 ФЭУ
- Основные реакции регистрации:

 $u_{lpha} + e^{-}
ightarrow
u_{lpha}' + e^{-\prime}$ $\overline{
u_e} + p
ightarrow e^{+} + n$

Эксперимент Борексино

Физическая программа

- Солнечные нейтрино
 - Берилиевые
 - Борные
 - pp, pep
 - CNO
- Антинейтрино
 - Реакторные
 - Гео-нейтрино
- Нейтрино от астрофизических источников
 - Сверхновые
 - Гамма-всплески
 - Диффузный поток нейтрино
- Нейтрино от ускорительного источника (CNGS)

Эксперимент Борексино

Солнечные нейтрино

- Расстояние от Борексино до ближайшего реактора: 416 км.
- Наличие гео-нейтринного сигнала подтверждается с достоверностью 5.9 *σ*.
- Количество тепла, производимого в Земле радиоактивными распадами U и Th ограничено на уровне 11-52 ТВт (69 % УД).

Актуальные задачи Борексино

Нейтрино от гамма-всплесков

10¹⁴ Некоторые модели космических гамма-всплесков (КГВ) предсказывают существенный поток нейтрино с энергией порядка нескольких МэВ. SNO 10¹³ -Борексино установлены лучшие в мире ограничения на флюенс электронных антинейтрино от КГВ в области энергий от 2 до 8 МэВ. ,10¹² E В области меньше 7 МэВ получены лучшие в мире ограничения на флюенс нейтрино всех сортов от KΓ́Β. ອີ10¹¹ При изучении КГВ использовалась система КЭИК. Neutrino fluence p 10¹⁰ Neutrino fluence Fluence upper limit [cm⁻²] SNO 10¹⁰ 10⁹ KamLAND long GRBs KamLAND short GBBs 10⁹ SK 10⁸ 10⁸ 2 8 12 14 Borexino primary Borexino FADC E [MeV] 10⁷ SuperKamiokande

Нейтрино от вспышек сверхновых

Взрывы сверхновых являются независимым инструментом исследования истории формирования звезд во Вселенной и производства тяжелых элементов внутри звезд.

Этапы коллапса:

- Коллапс верхних слоев.
- Захват нейтрино.
- Формирование ударной волны.
- Нейтринная вспышка.
- Аккреция вещества на протонейтронную звезду.
- Остывание Кельвина-Гельмгольца.

УРКА-процессы:

- $e^- + (A, Z) \longrightarrow (A, Z-1) + \nu_e;$
- $(A, Z-1) \longrightarrow e^- + (A, Z) + \overline{\nu_e};$

Средние энергии нейтрино:

- *E*_{ν_e} = 10 12 M₃B;
- *E*_{ν_e} = 14 17 МэВ;

Борексино входит в систему SNEWS.

Диффузный поток нейтрино от сверхновых (Diffuse Supernova Neutrino Background) — это поток нейтрино и антинейтрино всех сортов, излученных при вспышках сверхновых второго типа, которые произошли за время эволюции Вселенной.

 $R_{SN} pprox 10^{-4}$ год $^{-1}$ Мпк $^{-3}$

- *N_{SN}* –эмиссионный спектр сверхновой;
- *R_{SN}* функция распространенности сверхновых;
- Н₀ постоянная Хаббла;
- $\Omega_M = 0.3, \Omega_{\Lambda} = 0.7$ относительные плотности вещества и темной энергии;

Курчатовский электронно-измерительный комплекс (КЭИК) _{Основные характеристики}

- Широкий энергетический диапазон регистрации событий (от 1 до 100 МэВ).
- 102 канала АЦП.
- Гибкая логика выработки главного триггера регистрации.
- Отсутствие мёртвого времени между событиями.
- Частота дискретизации 400 МГц.
- Глубина буфера 512 событий.
- Скорость обработки непрерывного потока событий до 15 Гц.
- Независимость системы от основного комплекса сбора данных.

- Аналоговые схемы для суммирования сигналов.
- Набор VME-модулей АЦП (подсистема сбора данных).
- VME-модуль выработки триггера (на основе ПЛИС).
- Модули-распределители триггерных сигналов и тактовых частот.
- VME-модуль программируемых дискриминаторов.
- Дискриминатор внешнего детектора.
- Управляющая одноплатная ЭВМ (в VME-исполнении).

Триггерная подсистема

- Устройство выработки триггерных сигналов для АЦП.
- Устройство хранения триггерной информации (FIFO).
- Устройство подсчета мертвого времени.
- Устройство подсчета интенсивностей следования различных сигналов.
- Устройство формирования временной GPS метки.

Логика формирования триггера

Стадии формирования триггера:

- Задержка-формировка сигналов источников триггеров и запретов.
- Генерация триггерных кандидатов и запретов из источников.
- Схема антисовпадений кандидатов и запретов для формирования конечного триггера.
- Задержка и фазирование с тактовым сигналом конечного триггера.

Примеры событий

Онлайн программное обеспечение

Refresh : : setup : : monitor

Step	
Indicata spore work 82% Send's subge	

refresh :: run controller

refresh :: run controller

DF 1A DS D4	disc 0100 0102	riminator setup form
1A 06 04	0000 0002	000B
06 04	0002	00000
04		0008
	0004	0010
78	9006	0010
23	0008	0012
00	900A	0008
14	900C	0008
FF	000E	OOFF
FF	0010	0012
05	0012	0011
15	9014	000C
00	0016	0012
99	9018	0011
00	001A	OOFF
FF	901C	000F
00	001E	001A
53	0040	00DC
00	0042	00DC
04	0044	0
1D	0046	0
00	0048	001F
01	904A	DF7F
00	0040	0000
D2	Sut	smit
	23 00 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	33 960 30 608.4 30 608.4 44 6062 7 608.4 55 603.4 55 603.4 56 603.4 7 603.4 7 603.4 7 603.4 7 603.4 7 603.4 7 603.4 7 603.4 7 603.4 80 603.4 90 603.4 91 604.4 92 604.4 93 604.4 94 604.4 95 604.4 92 604.4 93 604.4 94 604.4 95 604.4 96 604.4 97 604.4 98 604.4 98 604.4 98 604.4 98 604.4

Процесс оффлайн анализа данных КЭИК:

- Преобразование первичных данных в формат ROOT.
- Декодирование формы импульса аналоговой и цифрофой сумм.
- Выделение кластеров.
- Определение энерговыделения в кластерах.
- Классификация событий.
- Интеграция данных КЭИК в единое дерево анализа Борексино.

Энергетическая калибровка КЭИК

- Энерговыделение события пропорционально площади под формой импульса кластера.
- Аналоговая сумма для низкоэнергетичных событий и цифровая для высокоэнергетичных.
- Калибровка производится регулярно по пику 2.2 МэВ γ-квантов от захвата нейтронов.
- Энергетическое разрешение на уровне 1 МэВ ≈10%.

Методики оффлайн-анализа

Выделение событий вызванных космическими мюонами

- Мюоны космических лучей важнейший источник фона в подземных детекторах.
- Основной метод определения внешний детектор (МТВ), эффективность: $(99.25 \pm 0.02)\%$
- Для повышения мюонной эффективности КЭИК была реализована дискриминация по форме импульса внутреннего детектора с использованием тренируемых алгоритмов.
- Тренировка проводилась на предварительно надёжно классифицированном наборе событий различных типов.
- Размер тренировочного набора несколько тыс. событий каждого класса.

Использованные алгоритмы:

- Многослойный перцептрон (MLP)
- Метод опорных векторов (SVM)
- Дерево принятия решений с

Выделение событий вызванных космическими мюонами

- Использование нескольких независимых алгоритмов идентификации позволяет гибко настраивать мюонный фильтр при анализе.
- Эффективность нового метода идентификации мюонов в КЭИК составила 0.999969.
- Эффективность соответствует (0.13 \pm 0.01) пропущенных мюона за сутки.

Выделение событий вызванных шумами электроники

- Несмотря на сложный триггер шумы электроники составляют существенный процент событий.
- Обучаемые алгоритмы аналогичные мюонному фильтру.
- Эффективность отбора шумовых событий 0.987.

	1-10 МэВ	<1 МэВ	>10 МэВ	Многокласт.	Шумовые
Число событий	7047	1560	99	2517	16467
Мюон, ур. 1	38	4	2	80	23
Мюон, ур. 2	13	1	0	22	2
Мюон, ур. 3	9	1	0	13	0
Шум, ур. 1	27	880	14	126	16430
Шум, ур. 2	12	27	3	100	16405
Шум, ур. 3	3	18	1	63	16207

Методики оффлайн-анализа

Интеграция данных КЭИК в единое дерево анализа Борексино

- Интеграция данных КЭИК с данными от остальных систем Борексино необходима для проведения комплексного анализа использующего преимущества каждой системы сбора данных.
- Интеграция происходит с использованием маркеров поступающих в аппаратуру КЭИК от триггера низкоэнергетичной системы LABEN.
- В случае наличия в событии GPS-метки производится покластерное сопоставление, иначе пособытийное.

Космогенный фон

Регистрация мюонов космических лучей в Борексино

- Измеренный поток космических мюонов через детектор Борексино: $(3.41 \pm 0.01)10^{-4}$ м⁻²с⁻¹, эквивалентно $(4310 \pm 2_{\text{стат}} \pm 10_{\text{сист}})$ мюонов через детектов в сутки.
- Средняя энергия мюонов: ≈ 280 ГэВ.

Космогенный фон

$$egin{aligned} n+p &
ightarrow d+\gamma, \ E_{\gamma} = 2.22 \ {
m M}$$
ə ${
m B} \ n+{}^{12}C &
ightarrow {}^{13}C+\gamma, \ E_{\gamma} = 4.95 \ {
m M}$ ə ${
m E} \$

- Отбор нейтронных событий в данных системы КЭИК производился в окне $\Delta t \in [30 \div 1500]$ мкс после мюона.
- Энергетический порог 1 МэВ.
- Случайные совпадения аналогично, но во временном окне [1530 ÷ 3000] мкс.

Удельный выход космогенных нейтронов в сцинтилляторе Борексино:

$$Y_n = \frac{N_n}{N_\mu} \cdot \frac{1}{\varepsilon_{det} \cdot \varepsilon_t} \cdot \frac{1}{l_\mu^{2 \vee g}} \cdot \frac{1}{\rho_{scint}} = (2.87 \pm 0.07_{\text{ctat}} \pm 0.15_{\text{cyct}}) \cdot 10^{-4} \, n / (\mu \cdot (r/\text{cm}^2))$$

- Время сбора данных 637.3 дней
- $N_{\mu} = 2686155$
- $N_n = 127501$
- $I_{\mu}^{avg} = 4/3R_{sss}$
- *R_{sss}* = 6.821 ± 0.005 м
- $\rho_{scint} = 0.88 \ r/cm^3$
- ε_{det} = 0.62
- ε_t = 0.89

Средняя кратность рождения нейтронов на мюон: $\overline{M} = (3.61 \pm 0.08_{\text{стат}} \pm 0.07_{\text{сист}})n/\mu$

Время захвата нейтрона: $au_n = (258.7 \pm 0.8_{\text{стат}} \pm 2.0_{\text{сист}})$ мкс.

¹²B

- Время жизни au=29.1 мс
- Пороговая энергия Q = 13.4 МэВ

^{12}N

- Время жизни au=15.9 мс
- Пороговая энергия Q = 17.3 МэВ

¹²В - наиболее распространенный космогенный радиоактивный изотоп в ЖОС.

Критерии отбора

- Энергетический диапазон [3.6 ÷ 18] МэВ
- Временное окно после мюона $\Delta t \in [2 \div 10000]$ мс.
- Расстояние от центра детектора <3 м

- ⁸Не и ⁹Li— β⁻-распадчики, которые могут распадаться в возбуждённые дочерние ядра, нестабильные к вылету нейтрона.
- Подобные процессы способны полностью имитировать сигнатуру обратного β -распада.
- Тройное совпадение мюона, β -распада и γ -квантов от захвата нейтрона предоставляет сигнатуру распадов ⁹Li и ⁸He.

$^{12}\mathsf{B}$

- Время жизни au = 257.2 мс
- Пороговая энергия Q = 13.6 МэВ

- Время жизни au = 171.7 мс
- Пороговая энергия Q = 10.7 МэВ

Результаты измерений с помощью КЭИК

Измеренный удельный выход для различных радиоактивных изотопов, нарабатываемых в жидком органическом сцинтилляторе при прохождении через него космических мюонов:

	Удельный выход шт/($\mu \cdot (r/cm^2)$					
	Борексино	KamLAND	LVD			
n	$(2.87 \pm 0.17) \cdot 10^{-4}$	$(2.79 \pm 0.31) \cdot 10^{-4}$	$(3.6 \pm 0.3) \cdot 10^{-4}$			
¹² N	$< 1.1 \cdot 10^{-7}$	$(1.8\pm0.4)\cdot10^{-7}$	_			
¹² B	$(56 \pm 3) \cdot 10^{-7}$	$(42.9 \pm 3.3) \cdot 10^{-7}$	_			
⁸ He	$< 1.5 \cdot 10^{-7}$	$(0.7\pm0.4)\cdot10^{-7}$	_			
⁹ Li	$(2.9 \pm 0.3) \cdot 10^{-7}$	$(2.2\pm0.2)\cdot10^{-7}$	_			

Автор внёс определяющий вклад в разработку и создание системы КЭИК в составе детектора Борексино, а также проводил анализ данных, полученных при помощи системы. Автором был осуществлён следующий комплекс научных и научно-технических работ:

- 1 Разработка архитектуры экспериментального комплекса.
- 2 Создание и наладка системы сбора данных на базе быстрых АЦП с шиной VME и реализация гибкой триггерной системы на базе ПЛИС.
- 3 Разработка «онлайн» программного обеспечения сбора данных системы.
- Обеспечение работоспособности КЭИК и процесса сбора данных с 2011 по 2016 год.
- 9 Разработка базовых методов и алгоритмов «оффлайн» анализа данных КЭИК, а также алгоритмов интеграции данных КЭИК в общую структуру анализа эксперимента Борексино.
- 6 Разработка метода выделения в данных КЭИК сцинтилляционных событий и событий, вызванных мюонами космических лучей.
- Изучение с помощью КЭИК космогенных нейтронов, нарабатываемых при взаимодействии космических мюонов со сцинтиллятором Борексино.
- 8 Изучение с помощью КЭИК космогенных радиоактивных изотопов в Борексино.

- Разработан и реализован в составе экспериментальной платформы Борексино уникальный электронно-измерительный комплекс на основе быстрых преобразователей формы импульса с гибкой триггерной системой (КЭИК), оптимизированный для регистрации нейтринного излучения от астрофизических источников.
- Реализованы алгоритмы оффлайн-анализа данных от комплекса, включающие в себя поиск событий в данных КЭИК, оценку их энерговыделения в детекторе и идентификацию мюонных, сцинтилляционных и шумовых событий.
- Реализована интеграция данных КЭИК в единую структуру анализа Борексино, что позволило проводить комплексный анализ, используя данные от нескольких подсистем Борексино.
- С 2011 по 2016 год проводилось обеспечение работы системы КЭИК с высоким отношением времени набора данных пригодных для анализа ко времени простоя.

- Данные системы КЭИК были использованы для получения результатов Борексино по потокам нейтрино от космических гамма-всплесков и земных недр.
- С помощью системы КЭИК были произведены измерения и получены новые результаты о частоте рождения космогенных радиоактивных элементов ¹²В, ¹²N, ⁸Не и ⁹Li при взаимодействии космических мюонов с жидким органическим сцинтиллятором на основе псевдокумола на глубине 3800 м водного эквивалента.
- Были получены новые результаты о наработке космогенных нейтронов при взаимодействии космических мюонов с жидким органическим сцинтиллятором на основе псевдокумола на глубине 3800 м водного эквивалента.

Публикации

- Bellini G., ..., Lukyanchenko G. [et al.] (Borexino Collab.) Cosmogenic backgrounds in Borexino at 3800 m water-equivalent depth // Journal of Cosmology and Astroparticle Physics. — 2013. — Vol. 2013, no. 8. — P. 049.
- 2 Lukyanchenko G. The status of the study of solar CNO neutrinos in the Borexino experiment // Physics of Atomic Nuclei. – 2015. – Vol. 78, no. 14. – P. 1621-1623.
- Bellini G., ..., Lukyanchenko G. [et al.] (Borexino Collab.) Spectroscopy of geoneutrinos from 2056 days of Borexino data // Phys. Rev. D - Particles, Fields, Gravitation and Cosmology. – 2015. – Vol. 92, no. 3. – 031101.
- Lukyanchenko G., Litvinovich E. Data acquisition system based on fast waveform digitizers for large neutrino detectors // Journal of Physics: Conference Series. – 2016. – Vol. 675, no. 1. – P. 39. – 012037.
- Литвинович Е. А., Лукьянченко Г. А. [и др.] Система сбора данных на основе быстрых оцифровщиков формы импульса / 2013. – Препринт / Нац. исследовательский центр «Курчатовский институт» ИАЭ-6756/2.
- б) Лукьянченко Г. А. Статус работ по изучению СNO-нейтрино от Солнца в эксперименте Борексино // Ядерная физика и инжиниринг. – 2014. – Т. 5, 11-12. – С. 908.
- Bellini G., ..., Lukyanchenko G. [et al.] (Borexino Collab.) Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy // Phys. Rev. D - Particles, Fields, Gravitation and Cosmology. – 2014. – Vol. 89, no. 11.
- Bellini G., ..., Lukyanchenko G. [et al.] (Borexino Collab.) Neutrinos from the primary proton-proton fusion process in the Sun // Nature. – 2014. – Vol. 512, no. 7515. – P. 383–386.
- Bellini G., ..., Lukyanchenko G. [et al.] (Borexino Collab.) New limits on heavy sterile neutrino mixing in B8 decay obtained with the Borexino detector // Phys. Rev. D - Particles, Fields, Gravitation and Cosmology. - 2013. - Vol. 88, no. 7. - 072010.
- Bellini G., ..., Lukyanchenko G. [et al.] (Borexino Collab.) Measurement of geo-neutrinos from 1353 days of Borexino // Physics Letters, Section B: Nuclear, Elementary Particle and HighEnergy Physics. - 2013. - Vol. 722, 4-5. - P. 295-300.
- Литвинович Е. А., Лукьянченко Г. А. [и др.] Проверка эффекта превышения скорости света нейтрино в эксперименте Церн – Гран Сассо / 2012. – Препринт / Нац. исследовательский центр «Курчатовский институт» ИАЭ-6700/2.

Спасибо за внимание!