The ring of weak Jacobi forms for D_{8} root system

Dmitry Adler
2 February 2018

Weak Jacobi forms

Weak Jacobi form of weight k and index $m(k, m \in \mathbb{Z})$ for a root lattice L is a holomorphic function $\varphi: \mathcal{H} \times(L \otimes \mathbb{C}) \rightarrow \mathbb{C}$, such that:

1) $\varphi\left(\frac{a \tau+b}{c \tau+d}, \frac{\mathfrak{z}}{c \tau+d}\right)=(c \tau+d)^{k} e^{\pi i m \frac{c(\mathfrak{z}, \mathfrak{b})}{c \tau+d}} \varphi(\tau, \mathfrak{z})$;
2) $\varphi\left(\tau, \mathfrak{z}+I \tau+I^{\prime}\right)=e^{-2 \pi i m(I, \mathfrak{z})-\pi i m(I, I) \tau} \varphi(\tau, \mathfrak{z})$ for $I, I^{\prime} \in L$;
3) $\varphi(\tau, w(\mathfrak{z}))=\varphi(\tau, \mathfrak{z})$ for w from Weyl group;
4) $\varphi\left(\frac{a \tau+b}{c \tau+d}, \frac{\bar{b}}{c \tau+d}\right)$ has a Fourier development:

$$
\sum_{\lambda \in L^{*}, n \geqslant 0} a(n, l) q^{n} \zeta^{\lambda}
$$

where $q=e^{2 \pi i \tau}, \zeta^{\lambda}=e^{2 \pi i(z, \lambda)}$.

The main results

Theorem. The ring of weak Jacobi forms for root lattice D_{n} with $n \leqslant 8$ is a free algebra over the ring of modular forms with $n+1$ generators. These generators can be written in an explicit form.

Remark. This theorem is also true in the case $n>8$, but construction of some generators is much more difficult.

Remark. The lattice D_{n} is a set
$\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid x_{1}+\ldots+x_{n} \equiv 0 \bmod 2\right\}$.

Generators in case D_{8}

We can predict the following list of generators:

$$
\begin{gathered}
\varphi_{0,1}, \varphi_{-2,1}, \varphi_{-4,1}, \varphi_{-8,1} \\
\varphi_{-6,2}, \varphi_{-8,2}, \varphi_{-10,2}, \varphi_{-12,2}, \varphi_{-14,2}
\end{gathered}
$$

Generators in case D_{8}

We can predict the following list of generators:

$$
\begin{gathered}
\varphi_{0,1}, \varphi_{-2,1}, \varphi_{-4,1}, \varphi_{-8,1}, \\
\varphi_{-6,2}, \varphi_{-8,2}, \varphi_{-10,2}, \varphi_{-12,2}, \varphi_{-14,2}
\end{gathered}
$$

Construction of $\varphi_{-4,1}$

For any lattice we can consider

$$
\vartheta_{L}(\tau, Z)=\sum_{I \in L} q^{\frac{(1, I)}{2}} e^{2 \pi i(l, Z)}
$$

Let us consider theta-functions for lattices $E_{8}=\left\langle D_{8}, \frac{e_{1}+\ldots+e_{8}}{2}\right\rangle$ and $D_{16}^{+}=\left\langle D_{16}, \frac{e_{1}+\ldots+e_{16}}{2}\right\rangle$.

Construction of $\varphi_{-4,1}$

One can compute that

$$
\begin{gathered}
E_{4}(\tau) \cdot \vartheta_{E_{8}}(\tau, Z)-\left.\vartheta_{D_{16}^{+}}\right|_{D_{8}}(\tau, Z)= \\
=\left(128-16 \sum_{j=1}^{8} \zeta_{j}-16 \sum_{j=1}^{8} \zeta_{j}^{-1}+\sum \zeta_{1}^{ \pm \frac{1}{2}} \ldots \zeta_{8}^{ \pm \frac{1}{2}}\right) q+q^{2}(\ldots),
\end{gathered}
$$

where $\zeta_{j}=e^{2 \pi i z_{j}}$.

Construction of $\varphi_{-4,1}$

The form

$$
\begin{gathered}
\varphi_{-4,1}(\tau, Z)=\frac{E_{4}(\tau) \cdot \vartheta_{E_{8}}(\tau, Z)-\left.\vartheta_{D_{16}^{+}}\right|_{D_{8}}(\tau, Z)}{\Delta(\tau)}= \\
=128-16 \sum_{j=1}^{8} \zeta_{j}-16 \sum_{j=1}^{8} \zeta_{j}^{-1}+\sum \zeta_{1}^{ \pm \frac{1}{2}} \ldots \zeta_{8}^{ \pm \frac{1}{2}}+q(\ldots) .
\end{gathered}
$$

is a weak Jacobi form of weight -4 and index 1 for D_{8}.

Construction of $\varphi_{-2,1}$

The differential operator

$$
H_{k}=\frac{1}{2 \pi i} \frac{\partial}{\partial \tau}+\frac{1}{8 \pi^{2}}\left(\frac{\partial}{\partial \mathfrak{z}}, \frac{\partial}{\partial \mathfrak{z}}\right)+(2 k-n) G_{2}(\tau) \times
$$

is well-defined on the space of (weak) Jacobi form.
More precisely,

$$
H_{k}: J_{k, m}^{(\text {weak })} \rightarrow J_{k+2, m}^{(\text {weak })}
$$

Construction of $\varphi_{-2,1}$

In our case $k=-4, n=8$, and

$$
\left(\frac{\partial}{\partial \mathfrak{z}}, \frac{\partial}{\partial \mathfrak{z}}\right)=\sum_{j=1}^{8} \frac{\partial^{2}}{\partial z_{j}^{2}} .
$$

We get

$$
\begin{gathered}
H_{-4}\left(\varphi_{-4,1}\right)=\frac{1}{3}\left(256-8 \sum_{j=1}^{8} \zeta_{j}-8 \sum_{j=1}^{8} \zeta_{j}^{-1}-\sum \zeta_{1}^{ \pm \frac{1}{2}} \ldots \zeta_{8}^{ \pm \frac{1}{2}}\right)+ \\
+q(\ldots)
\end{gathered}
$$

Generators for D_{n} with $n<8$

Using generators for the case D_{8} and assuming $z_{8}=0$, we obtain generators for the case D_{7}.

Assuming after that $z_{7}=0$, we obtain generators for the case D_{6}, and so on.

Thank you for your attention!

