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Introduction

4d N = 2 SUSY gauge theories 2d CFT

Integrable systems Isomonodromy deformations

[AGT 2009]

[GKMMM 95] [GIL 12]

In [Gorsky Krichever Marshakov Mironov Morozov 95] the exact Seiberg-Witten
(SW) description of the light sector in the N = 2 SUSY 4d Yang-Mills theory
is reformulated in terms of integrable systems.

[Alday Gaiotto Tachikawa 09] relation states that (in paticular) Nekrasov
partition functions are equal to conformal blocks.

[Gamayun Iorgov Lisovyy 12] relation states that isomonodromic tau function is
equal to certain series of conformal blocks.
It was known only for special central charges (ε1 + ε2 = 0 in Nekrasov terms),
at the end of the talk we remove this constraint.

Today I mainly talk about dashed line — deautonomization.
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Introduction 2

These objects and relations among them exist also when have been raised from
original setup to “5d – relativistic – q-deformed” framework, moreover the objects
and relations acquire some new and nice properties.

Integrable systems, becomes relativistic [Nekrasov 96]. This relativization can
be more generally formulated in terms of cluster integrable systems
[Goncharov Kenyon 11], [Fock Marshakov 14].

5d Nekrasov partition functions are closely related to the topological strings
partition functions. Also 5d Nekrasov partition functions can be defined as
indices (see 1 lectures by [Kim])

Conformal symmetry becomes q-deformed, and the q-deformed W-algebras
do have unified description by generators and relations as a quotient of certain
quantum group – the Ding-Iohara-Miki algebra (quantum toroidal gl(1))

5d SUSY gauge theories q-deformed algebras

Relativistic integrable systems q-isomonodromy deformations
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Main Example

5d SUSY pure gauge theory Whittaker (Gaiotto) limit

Relativistic Toda (two particles) q-Painlev’e equation A
(1)′

7

q-Painlevé classification [Sakai 01].

q-deformation of AGT relation [Awata Yamada 09], [Yanagida 14], [Negut 17]

q-deformation of GIL relation [MB Shchechkin 16], [Jimbo Nagoya Sakai 17].

Deautonomization of cluster integrable system is done by switching off one of the
basic constraints in their construction. We consider all cluster integrable systems
with two-dimensional phase space, and show that their deautonomizations are
q-difference Painlevé equations (all except two).
The mutations of the quiver (supplemented by permutations of its vertices)
generate the q-Painlevé dynamics, as well as the automorphisms of the system.
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Integrable systems on cluster varieties

A lattice polygon ∆ is a polygon in the plane R2 with all vertices in Z2 ⊂ R2.
There is an action of the group SA(2,Z) = SL(2,Z) n Z2 on the set of such
polygons, which preserves the area and the number of interior points.

Any convex polygon ∆ can be considered as a Newton polygon of polynomial
f∆(λ, µ), and equation

f∆(λ, µ) =
∑

(a,b)∈∆
λaµbfa,b = 0. (1)

defines a plane (noncompact) spectral curve. In general position, the genus g
of this curve is equal to the number of integral points inside the polygon ∆.

According to [Goncharov Kenyon 11], [Fock Marshakov 14]. a convex Newton
polygon ∆ defines a cluster integrable system.
The phase space is an X -cluster Poisson variety X , of dimension dimX = 2S ,
where S is an area of the polygon ∆. The Poisson structure in cluster
variables is encoded by the quiver Q with 2S vertices. Let εij be the number
of arrows from i-th to j-th vertex (εji = −εij) of Q, then Poisson bracket has
the form {yi , yj} = εijyiyj . The rank of the Possin form is equal to the
number of interior points in ∆.

The product of all cluster variables
∏

i yi is a Casimir and set to be 1.
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Newton polygons

It is well-known that any convex lattice polygon with the only lattice point in the
interior is equivalent by SA(2,Z) to one of the 16 polygons from Fig 1.

3 4a 4b 4c 5a 5b 6a 6b

6c 6d 7a 7b 8a 8b 8c 9

Figure: Polygons with a single internal point and 3 ≤ B ≤ 9 boundary points.

We label them Bx , where B is a number of the boundary points, and letter x
distinguished their types, if there are several for given B.
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Quivers
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Figure: polygon with B boundary points corresponds to the only quiver with B vertices.

The only exceptional case is B = 4, where the polygons 4a, 4c correspond to the A
(1)′

7

quiver, and the polygon 4b corresponds to different A
(1)
7 quiver. The labeling here is

consistent with Sakai classification
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Poisson maps and discrete flows

Permutation of the vertices of a quiver, together with the cluster variables
{yi} assigned to the vertices, complemented with corresponding permutations
of the edges.
Cluster mutations. A mutation can be performed at any vertex. Denote by µj

the mutation at j-th vertex. It acts as

µj : yj 7→ y−1
j , yi 7→ yi

(
1 + y

sgn(εij )
j

)εij
, i 6= j , (2)

supplemented by transformation of the quiver Q itself, so that

εik 7→ εik +
εij |εjk |+ εjk |εij |

2
. (3)

Inversion ς, the transformation which reverses orientations of all edges and
maps all ς : {yi} 7→ {y−1

i }. Note, that ς changes the sign of the Poisson
structure, this is natural since it reverses the “time direction”.
Denote by GQ the stabilizer of the quiver Q. Such transformations
nevertheless generate nontrivial rational (positive) transformation of the
cluster variables {yi}.
This group (up to some details) preserves Goncharov-Kenyon integrable
system. This group can be called the group of dicrete flows.
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Examples

A
(1)′

7 . The group GQ contains nontrivial element T = (1, 2)(3, 4) ◦ µ1 ◦ µ3

Denote x = y1, y = y2, Z = y1y3, then {x , y} = 2xy and Z is the Casimir

function. Transformation T acts as (x , y) 7→ (y (x+Z)2

(x+1)2 , x
−1).

The Hamiltonian, invariant under this transformation, has the form

1 2

34 H =
√
xy +

√
xy−1 +

√
x−1y−1 + Z

√
yx−1 (4)

This is the Hamiltonian of relativistic two-particle affine Toda chain.

A
(1)
7 . The group GQ contains element T = (1324) ◦ µ3.

Denote x = y3, y = y4, Z = y2

√
y4

y3
, then {x , y} = 2xy and Z is the Casimir

function. The transformation T acts as (x , y) 7→ ( 1

Z
√

x3y
(1 + x),Z

√
x√
y (1 + x)).

The Hamiltonian, invariant under such transformation, has the form

1 2

34 H =
√
xy +

√
xy−1 +

√
x−1y−1 + Zx−1 (5)

This Hamiltonian is different from (4), though it has the same limit at Z → 0.
A different affinization of two-particle relativistic Toda.
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Deautonomization

In the deautomization we set q =
∏

i yi 6= 1.

Theorem
For each quiver from Fig. 2 the group GQ contains subgroup isomorphic to the
symmetry group of the corresponding q-Painlevé equation and its action on
variables yi is equivalent to q-Painlevé dynamics.

A1
2 The group GQ contains elements

s1 = (2, 3), s2 = (1, 2), s4 = (4, 5), s5 = (5, 6), s6 = (7, 8), s0 = (8, 9),

s3 = (4,7) ◦ µ1 ◦ µ4 ◦ µ7 ◦ µ1, π = (1,4,7)(2,5,8)(3,6,9), σ = (1,7)(2,8)(3,9) ◦ ς.
The only tricky element is the reflections s3

s3 : (y1, y2, y3, y4, y5, y6, y7, y8, y9) 7→
( y1

y4y7

1+y4+y−1
1

1+y1+y−1
7

, y1y2
1+y4+y−1

1

1+y1+y−1
7

,

y1y3
1+y4+y−1

1

1+y1+y−1
7

,
y4

y1y7

1+y7+y−1
4

1+y4+y−1
1

, y4y5
1+y7+y−1

4

1+y4+y−1
1

, y4y6
1+y7+y−1

4

1+y4+y−1
1

,
y7

y1y4

1+y1+y−1
7

1+y7+y−1
4

,

y7y8
1+y1+y−1

7

1+y7+y−1
4

, y7y9
1+y1+y−1

7

1+y7+y−1
4

)
.

1
2
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7
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9
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6
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τ variables

There is an alternative, or dual to the Poisson X -cluster varieties language,
called A-cluster varieties. We call the corresponding A-cluster variables as
{τI} due to their relation to the tau-functions for q-difference Painlevé
equations. Under mutation at j-th vertex these variables are transformed as

µj : τj 7→ τ−1
j

( ∏
bIj>0

τ
bIj
I +

∏
bIj<0

τ
−bIj
I

)
τI 7→ τI , I 6= j (6)

and antisymmetric matrix B = {bi,j} is transformed by the formula (3).
Generally there are more {τI}-variables, than their X -cluster {yi}-relatives.
Mutations are allowed only in the vertices of Γ, other vertices of the extended
quiver Γ̂ are called therefore frozen. A relation between τI and yj is given by

the formula yj =
∏

I∈Γ̂ τ
bIj
I ,

A
(1′)
7 . It is convenient to use Denote the action of T as overline, and action

of T−1 as underline. Then we have

(τ1, τ2, τ3, τ4) = (τ2, τ
−1
1

(
τ 2

2 + q1/2Z 1/2τ 2
4

)
, τ4, τ

−1
3

(
τ 2

4 + q1/2Z 1/2τ 2
2

)
) (7)

These leads to bilinear equations

τ1τ 1 = τ 2
1 + Z 1/2τ 2

3 , τ3τ 3 = τ 2
3 + Z 1/2τ 2

1 . (8)
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Solution

Bilinear relations

τ1τ 1 = τ 2
1 + Z 1/2τ 2

3 , τ3τ 3 = τ 2
3 + Z 1/2τ 2

1 . (9)

One can consider the τi = τi (qZ ), τi = τi (q
−1Z ), then the equations (9)

become q-difference bilinear equations. These equations can be called the

bilinear form of the q-Painlevé equation (of the surface type A
(1)′

7 ).

The formal solution of these equations was proposed in [MB Shchechkin 2016],
namely τ1 = T (u, s; q|Z ), τ3 = is1/2T (uq, s; q|Z ), where

T (u, s; q|Z ) =
∑
m∈Z

smF(uq2m; q, q−1|Z ). (10)

Here F(u; q, q−1;Z ) is a properly normalized 5d Nekrasov partition function
for pure SU(2) gauge theory.

There is a similar conjecture for any Newton polygon ∆— deautonomization
of Goncharov Kenyon integrable system corresponding to ∆ can be solved in
terms of topological strings partition functions corresponding to ∆.
This is equivalent to bilinear relation on partition functons simialar to blowup
equations on C2/Z2 (c.f. yesterday talk [Sun]).
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Quantization

We denote the multiplicative quantization parameter as p in order to
distinguish it from the parameter q in difference equations. We do not impose
any relation on p, q, at the end of the day it will be convenient to express
them p = q2

1q
2
2 , q = q2

2 in terms of Nekrasov background parameters q1, q2.

The quantization of the quadratic Poisson bracket {yi , yj} = εijyiyj has the
form

yiyj = p−2εij yjyi (11)

Quantum mutations µj for these generators are given by (compare to (2))

µj : yj 7→ y−1
j , y

1/|εij |
i 7→ y

1/|εij |
i

(
1 + py

sgn εij
j

)sgn εij
, i 6= j (12)

and the same formula (3) for the exchange matrix ε. One can check that
mutations of {yi} and ε preserve the relations (11).
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Example A
(1′)
7

Again we have two central or Casimir elements Z = y1y3, q = y1y3y2y4
1 2

34

Similarly to classical case consider the discrete flow
T = (1, 2)(3, 4) ◦ µ1 ◦ µ3. In quantum case it reads(

y
1/2
1 , y

1/2
2 , y

1/2
3 , y

1/2
4

)
7→
(
y

1/2
2

1 + py3

1 + py−1
1

, y
−1/2
1 , y

1/2
4

1 + py1

1 + py−1
3

, y
−1/2
3

)
.

where the ratios in the r.h.s. are well-defined, since y1 and y3 commute with
each other

For q = 1 we have an invariant Hamiltonian

H = y
1/2
2 y

1/2
1 + y

1/2
1 y

−1/2
2 + y

−1/2
2 y

−1/2
1 + Zy

−1/2
1 y

1/2
2 (13)

This is a Hamiltonian of quantum relativistic two-particle affine Toda chain.
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Quantum τ

There are quantum analogs of the A-cluster τ -variables. Following [Berenstein
Zelevinsky 04] we quantize {τI}-variables and consider them as elements of
the quantum cluster algebra with relations τI τJ = pΛIJ/2τJτI , where
I , J = 1, . . . , 6 and the matrix Λ is

Λ =


0 0 0 1 1 0
0 0 −1 0 1 −1
0 1 0 0 1 0
−1 0 0 0 1 −1
−1 −1 −1 −1 0 0
0 1 0 1 0 0

 (14)

For quantum {τI}-variables we now fix the notations τ1 = T1, τ2 = T2,
τ3 = T3, τ4 = T4, so that first four will be quantum T -functions. Two last
are τ5 = q1/4, τ6 = Z 1/4, they are still generally noncommutative with Ti .
We now define the discrete dynamics of the quantum T -functions by

(T1, T2, T3, T4, Z , q) = (T2, T −1
1 (T 2

2 + p2(qZ)1/2T 2
4 ), T4, T −1

3 (T 2
4 + p2(qZ)1/2T 2

2 ), Zq, q), (15)

(T1, T2, T3, T4, Z , q) = ((T 2
1 + p2Z 1/2T 2

3 )T −1
2 , T1, (T 2

3 + p2Z 1/2T 2
1 )T −1

4 , T3, Zq
−1
, q). (16)

It is straightforward to check that this dynamics preserves commutation
relations
We have a bilinear relations T1T1 = T 2

1 + p2Z 1/2T 2
3 , T3T3 = T 2

3 + p2Z 1/2T 2
1 ,
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Solution of the quantization

We have a bilinear relations

T1T1 = T 2
1 + p2Z 1/2T 2

3 , T3T3 = T 2
3 + p2Z 1/2T 2

1 , (17)

Now we want to present explicit formula for the Ti . Denote q2 = q1/2,
q1 = q−1

2 p2. The solution will be the function depending on variables
q1, q2, u, s,Z , a, bm with nontrivial commutation relations:

q2
2a = p−2aq2

2 , q1q
−1
2 a = p2aq1q

−1
2 , us = p4su, Zb = p2bZ . (18)

The discrete flow of this set of quantum variables is

(q1, q2, u, s,Z , a, b) = (q1, q2, u, s, q
2
2Z , ab, b)

It is easy to check, that this discrete flow preserves the commutation relations

Conjecture

Bilinear equations (17) are solved in terms of 5d Nekrasov functions:

T1 = a
∑

m∈Z
smF(uq4m

2 ; q1q
−1
2 , q2

2 |Z ), T2 = ab
∑

m∈Z
smF(uq4m

2 ; q1q
−1
2 , q2

2 |q2
2Z ),

T3 = ia
∑

m∈Z+1/2

smF(uq4m
2 ; q1q

−1
2 , q2

2 |Z ), T4 = iab
∑

m∈Z+1/2

smF(uq4m
2 ; q1q

−1
2 , q2

2 |q2
2Z ).
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Abstract

We discuss the relation between the cluster integrable systems and q-difference
Painlevé equations. The Newton polygons corresponding to these integrable
systems are all 16 convex polygons with a single interior point. The Painlevé
dynamics is interpreted as deautonomization of the discrete flows, generated by a
sequence of the cluster quiver mutations, supplemented by permutations of quiver
vertices.
We also define quantum q-Painlevé systems by quantization of the corresponding
cluster variety. We present formal solution of these equations for the case of pure
gauge theory using q-deformed conformal blocks or 5-dimensional Nekrasov
functions. We propose, that quantum cluster structure of the Painlevé system
provides generalization of the isomonodromy/CFT correspondence for arbitrary
central charge.
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Thank you for your attention!
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Discussion

Extended global symmetries [Seiberg 96] and others.

Quivers by [Ceccotti Vafa 11].

Topological strings – spectral theory duality [Grassi Marino Hatsuda 11],
[Bonelli Grassi Tanzini 17]

Different approaches to quantization [Kuroki 08], [Hasegawa 07], [Nagoya,

Yamada 12]
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