Difference Painlevé equations from 5D gauge theories

M. Bershtein

based on joint paper with P. Gavrylenko and A. Marshakov arXiv:1711.02063, to appear in JHEP

2 February 2018

Introduction

$$
\begin{aligned}
4 \mathrm{~d} \mathcal{N}=2 \text { SUSY gauge theories } \xrightarrow{[\text { AGT 2009] }} 2 \mathrm{~d} \text { CFT } \\
\left.\qquad \begin{array}{l}
\downarrow \text { GKMMM 95] }
\end{array}\right][\text { GIL 12] }
\end{aligned}
$$

Integrable systems ----------> Isomonodromy deformations

- In [Gorsky Krichever Marshakov Mironov Morozov 95] the exact Seiberg-Witten (SW) description of the light sector in the $\mathcal{N}=2$ SUSY 4d Yang-Mills theory is reformulated in terms of integrable systems.
- [Alday Gaiotto Tachikawa 09] relation states that (in paticular) Nekrasov partition functions are equal to conformal blocks.
- [Gamayun lorgov Lisovyy 12] relation states that isomonodromic tau function is equal to certain series of conformal blocks.
It was known only for special central charges $\left(\epsilon_{1}+\epsilon_{2}=0\right.$ in Nekrasov terms), at the end of the talk we remove this constraint.
- Today I mainly talk about dashed line - deautonomization.

Introduction 2

These objects and relations among them exist also when have been raised from original setup to " 5 d - relativistic - q-deformed" framework, moreover the objects and relations acquire some new and nice properties.

- Integrable systems, becomes relativistic [Nekrasov 96]. This relativization can be more generally formulated in terms of cluster integrable systems [Goncharov Kenyon 11], [Fock Marshakov 14].
- 5d Nekrasov partition functions are closely related to the topological strings partition functions. Also 5d Nekrasov partition functions can be defined as indices (see 1 lectures by [Kim])
- Conformal symmetry becomes q-deformed, and the q-deformed W -algebras do have unified description by generators and relations as a quotient of certain quantum group - the Ding-lohara-Miki algebra (quantum toroidal $\mathfrak{g l}(1)$)

5d SUSY gauge theories $\longrightarrow q$-deformed algebras

Relativistic integrable systems $--\rightarrow q$-isomonodromy deformations

Main Example

5d SUSY pure gauge theory \longrightarrow Whittaker (Gaiotto) limit

Relativistic Toda (two particles) $\cdots q$-Painlev'e equation $A_{7}^{(1)^{\prime}}$

- q-Painlevé classification [Sakai 01].
- q-deformation of AGT relation [Awata Yamada 09], [Yanagida 14], [Negut 17]
- q-deformation of GIL relation [MB Shchechkin 16], [Jimbo Nagoya Sakai 17].

Deautonomization of cluster integrable system is done by switching off one of the basic constraints in their construction. We consider all cluster integrable systems with two-dimensional phase space, and show that their deautonomizations are q-difference Painlevé equations (all except two).
The mutations of the quiver (supplemented by permutations of its vertices) generate the q-Painlevé dynamics, as well as the automorphisms of the system.

Integrable systems on cluster varieties

- A lattice polygon Δ is a polygon in the plane \mathbb{R}^{2} with all vertices in $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$. There is an action of the group $S A(2, \mathbb{Z})=S L(2, \mathbb{Z}) \ltimes \mathbb{Z}^{2}$ on the set of such polygons, which preserves the area and the number of interior points.
- Any convex polygon Δ can be considered as a Newton polygon of polynomial $f_{\Delta}(\lambda, \mu)$, and equation

$$
\begin{equation*}
f_{\Delta}(\lambda, \mu)=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}=0 . \tag{1}
\end{equation*}
$$

defines a plane (noncompact) spectral curve. In general position, the genus g of this curve is equal to the number of integral points inside the polygon Δ.

- According to [Goncharov Kenyon 11], [Fock Marshakov 14]. a convex Newton polygon Δ defines a cluster integrable system.
The phase space is an X-cluster Poisson variety \mathcal{X}, of dimension $\operatorname{dim}_{\mathcal{X}}=2 S$, where S is an area of the polygon Δ. The Poisson structure in cluster variables is encoded by the quiver \mathcal{Q} with $2 S$ vertices. Let $\epsilon_{i j}$ be the number of arrows from i-th to j-th vertex $\left(\epsilon_{j i}=-\epsilon_{i j}\right)$ of \mathcal{Q}, then Poisson bracket has the form $\left\{y_{i}, y_{j}\right\}=\epsilon_{i j} y_{i} y_{j}$. The rank of the Possin form is equal to the number of interior points in Δ.
- The product of all cluster variables $\prod_{i} y_{i}$ is a Casimir and set to be 1 .

Newton polygons

It is well-known that any convex lattice polygon with the only lattice point in the interior is equivalent by $S A(2, \mathbb{Z})$ to one of the 16 polygons from Fig 1.

Figure: Polygons with a single internal point and $3 \leq B \leq 9$ boundary points.

We label them $B x$, where B is a number of the boundary points, and letter x distinguished their types, if there are several for given B.

Quivers

Figure: polygon with B boundary points corresponds to the only quiver with B vertices. The only exceptional case is $B=4$, where the polygons $4 a, 4 c$ correspond to the $A_{7}^{(1)^{\prime}}$ quiver, and the polygon $4 b$ corresponds to different $A_{7}^{(1)}$ quiver. The labeling here is consistent with Sakai classification

Poisson maps and discrete flows

- Permutation of the vertices of a quiver, together with the cluster variables $\left\{y_{i}\right\}$ assigned to the vertices, complemented with corresponding permutations of the edges.
- Cluster mutations. A mutation can be performed at any vertex. Denote by μ_{j} the mutation at j-th vertex. It acts as

$$
\begin{equation*}
\mu_{j}: \quad y_{j} \mapsto y_{j}^{-1}, \quad y_{i} \mapsto y_{i}\left(1+y_{j}^{\operatorname{sgn}\left(\epsilon_{i j}\right)}\right)^{\epsilon_{i j}}, \quad i \neq j, \tag{2}
\end{equation*}
$$

supplemented by transformation of the quiver \mathcal{Q} itself, so that

$$
\begin{equation*}
\epsilon_{i k} \mapsto \epsilon_{i k}+\frac{\epsilon_{i j}\left|\epsilon_{j k}\right|+\epsilon_{j k}\left|\epsilon_{i j}\right|}{2} \tag{3}
\end{equation*}
$$

- Inversion ς, the transformation which reverses orientations of all edges and maps all $\varsigma:\left\{y_{i}\right\} \mapsto\left\{y_{i}^{-1}\right\}$. Note, that ς changes the sign of the Poisson structure, this is natural since it reverses the "time direction".
- Denote by $\mathcal{G}_{\mathcal{Q}}$ the stabilizer of the quiver \mathcal{Q}. Such transformations nevertheless generate nontrivial rational (positive) transformation of the cluster variables $\left\{y_{i}\right\}$.
- This group (up to some details) preserves Goncharov-Kenyon integrable system. This group can be called the group of dicrete flows.

Examples

$\mathbf{A}_{7}^{(1)^{\prime}}$. The group $\mathcal{G}_{\mathcal{Q}}$ contains nontrivial element $T=(1,2)(3,4) \circ \mu_{1} \circ \mu_{3}$ Denote $x=y_{1}, y=y_{2}, Z=y_{1} y_{3}$, then $\{x, y\}=2 x y$ and Z is the Casimir function. Transformation T acts as $(x, y) \mapsto\left(y \frac{(x+Z)^{2}}{(x+1)^{2}}, x^{-1}\right)$.
The Hamiltonian, invariant under this transformation, has the form

$$
\begin{equation*}
H=\sqrt{x y}+\sqrt{x y^{-1}}+\sqrt{x^{-1} y^{-1}}+Z \sqrt{y x^{-1}} \tag{4}
\end{equation*}
$$

This is the Hamiltonian of relativistic two-particle affine Toda chain.
$\mathbf{A}_{7}^{(1)}$. The group $\mathcal{G}_{\mathcal{Q}}$ contains element $T=(1324) \circ \mu_{3}$.
Denote $x=y_{3}, y=y_{4}, Z=y_{2} \sqrt{\frac{y_{4}}{y_{3}}}$, then $\{x, y\}=2 x y$ and Z is the Casimir function. The transformation T acts as $(x, y) \mapsto\left(\frac{1}{Z \sqrt{x^{3} y}}(1+x), Z \frac{\sqrt{x}}{\sqrt{y}}(1+x)\right)$.
The Hamiltonian, invariant under such transformation, has the form

$$
\begin{equation*}
H=\sqrt{x y}+\sqrt{x y^{-1}}+\sqrt{x^{-1} y^{-1}}+Z x^{-1} \tag{5}
\end{equation*}
$$

This Hamiltonian is different from (4), though it has the same limit at $Z \rightarrow 0$. A different affinization of two-particle relativistic Toda.

Deautonomization

In the deautomization we set $q=\prod_{i} y_{i} \neq 1$.

Theorem

For each quiver from Fig. 2 the group $\mathcal{G}_{\mathcal{Q}}$ contains subgroup isomorphic to the symmetry group of the corresponding q-Painlevé equation and its action on variables y_{i} is equivalent to q-Painlevé dynamics.
\mathbb{A}_{2}^{1} The group $\mathcal{G}_{\mathcal{Q}}$ contains elements

$$
\begin{array}{r}
s_{1}=(2,3), \quad s_{2}=(1,2), \quad s_{4}=(4,5), \quad s_{5}=(5,6), \quad s_{6}=(7,8), \quad s_{0}=(8,9), \\
s_{3}=(4,7) \circ \mu_{1} \circ \mu_{4} \circ \mu_{7} \circ \mu_{1}, \quad \pi=(1,4,7)(2,5,8)(3,6,9), \quad \sigma=(1,7)(2,8)(3,9) \circ \varsigma .
\end{array}
$$

The only tricky element is the reflections s_{3}

$$
\begin{gathered}
s_{3}:\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}, y_{8}, y_{9}\right) \\
\mapsto\left(\frac{y_{1}}{y_{4} y_{7}} \frac{1+y_{4}+y_{1}^{-1}}{1+y_{1}+y_{7}^{-1}}, y_{1} y_{2} \frac{1+y_{4}+y_{1}^{-1}}{1+y_{1}+y_{7}^{-1}},\right. \\
y_{1} y_{3} \frac{1+y_{4}+y_{1}^{-1}}{1+y_{1}+y_{7}^{-1}}, \frac{y_{4}}{y_{1} y_{7}} \frac{1+y_{7}+y_{4}^{-1}}{1+y_{4}+y_{1}^{-1}}, y_{4} y_{5} \frac{1+y_{7}+y_{4}^{-1}}{1+y_{4}+y_{1}^{-1}}, y_{4} y_{6} \frac{1+y_{7}+y_{4}^{-1}}{1+y_{4}+y_{1}^{-1}}, \frac{y_{7}}{y_{1} y_{4}} \frac{1+y_{1}+y_{7}^{-1}}{1+y_{7}+y_{4}^{-1}}, \\
\left.y_{7} y_{8} \frac{1+y_{1}+y_{7}^{-1}}{1+y_{7}+y_{4}^{-1}}, y_{7} y_{9} \frac{1+y_{1}+y_{7}^{-1}}{1+y_{7}+y_{4}^{-1}}\right) .
\end{gathered}
$$

τ variables

- There is an alternative, or dual to the Poisson X-cluster varieties language, called A-cluster varieties. We call the corresponding A-cluster variables as $\left\{\tau_{l}\right\}$ due to their relation to the tau-functions for q-difference Painlevé equations. Under mutation at j-th vertex these variables are transformed as

$$
\begin{equation*}
\mu_{j}: \quad \tau_{j} \mapsto \tau_{j}^{-1}\left(\prod_{b_{l}>0} \tau_{l}^{b_{l j}}+\prod_{b_{l j}<0} \tau_{l}^{-b_{l j}}\right) \quad \tau_{l} \mapsto \tau_{l}, \quad I \neq j \tag{6}
\end{equation*}
$$

and antisymmetric matrix $B=\left\{b_{i, j}\right\}$ is transformed by the formula (3).

- Generally there are more $\left\{\tau_{1}\right\}$-variables, than their X-cluster $\left\{y_{i}\right\}$-relatives. Mutations are allowed only in the vertices of Γ, other vertices of the extended quiver $\hat{\Gamma}$ are called therefore frozen. A relation between τ_{l} and y_{j} is given by the formula $y_{j}=\prod_{l \in \hat{\Gamma}} \tau_{l}^{b_{j j}}$,
- $\mathbf{A}_{7}^{\left(\mathbf{1}^{\prime}\right)}$. It is convenient to use Denote the action of T as overline, and action of T^{-1} as underline. Then we have

$$
\begin{equation*}
\overline{\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)}=\left(\tau_{2}, \tau_{1}^{-1}\left(\tau_{2}^{2}+q^{1 / 2} Z^{1 / 2} \tau_{4}^{2}\right), \tau_{4}, \tau_{3}^{-1}\left(\tau_{4}^{2}+q^{1 / 2} Z^{1 / 2} \tau_{2}^{2}\right)\right) \tag{7}
\end{equation*}
$$

These leads to bilinear equations

$$
\begin{equation*}
\underline{\tau_{1}} \bar{\tau}_{1}=\tau_{1}^{2}+Z^{1 / 2} \tau_{3}^{2}, \quad \underline{\tau_{3}} \bar{\tau}_{3}=\tau_{3}^{2}+Z^{1 / 2} \tau_{1}^{2} . \tag{8}
\end{equation*}
$$

Solution

- Bilinear relations

$$
\begin{equation*}
\underline{\tau_{1}} \bar{\tau}_{1}=\tau_{1}^{2}+Z^{1 / 2} \tau_{3}^{2}, \quad \underline{\tau_{3}} \bar{\tau}_{3}=\tau_{3}^{2}+Z^{1 / 2} \tau_{1}^{2} \tag{9}
\end{equation*}
$$

- One can consider the $\overline{\tau_{i}}=\tau_{i}(q Z), \underline{\tau_{i}}=\tau_{i}\left(q^{-1} Z\right)$, then the equations (9) become q-difference bilinear equations. These equations can be called the bilinear form of the q-Painlevé equation (of the surface type $A_{7}^{(1)^{\prime}}$).
- The formal solution of these equations was proposed in [MB Shchechkin 2016], namely $\tau_{1}=\mathcal{T}(u, s ; q \mid Z), \tau_{3}=i s^{1 / 2} \mathcal{T}(u q, s ; q \mid Z)$, where

$$
\begin{equation*}
\mathcal{T}(u, s ; q \mid Z)=\sum_{m \in \mathbb{Z}} s^{m} F\left(u q^{2 m} ; q, q^{-1} \mid Z\right) \tag{10}
\end{equation*}
$$

Here $\mathrm{F}\left(u ; q, q^{-1} ; Z\right)$ is a properly normalized 5 d Nekrasov partition function for pure $S U(2)$ gauge theory.

- There is a similar conjecture for any Newton polygon Δ - deautonomization of Goncharov Kenyon integrable system corresponding to Δ can be solved in terms of topological strings partition functions corresponding to Δ.
This is equivalent to bilinear relation on partition functons simialar to blowup equations on $\mathbb{C}^{2} / \mathbb{Z}_{2}$ (c.f. yesterday talk [Sun]).

Quantization

- We denote the multiplicative quantization parameter as p in order to distinguish it from the parameter q in difference equations. We do not impose any relation on p, q, at the end of the day it will be convenient to express them $p=q_{1}^{2} q_{2}^{2}, q=q_{2}^{2}$ in terms of Nekrasov background parameters q_{1}, q_{2}.
- The quantization of the quadratic Poisson bracket $\left\{y_{i}, y_{j}\right\}=\epsilon_{i j} y_{i} y_{j}$ has the form

$$
\begin{equation*}
y_{i} y_{j}=p^{-2 \epsilon_{i j}} y_{j} y_{i} \tag{11}
\end{equation*}
$$

- Quantum mutations μ_{j} for these generators are given by (compare to (2))

$$
\begin{equation*}
\mu_{j}: \quad y_{j} \mapsto y_{j}^{-1}, \quad y_{i}^{1 /\left|\epsilon_{i j}\right|} \mapsto y_{i}^{1 /\left|\epsilon_{i j}\right|}\left(1+p y_{j}^{\operatorname{sgn} \epsilon_{i j}}\right)^{\operatorname{sgn} \epsilon_{i j}}, i \neq j \tag{12}
\end{equation*}
$$

and the same formula (3) for the exchange matrix ϵ. One can check that mutations of $\left\{y_{i}\right\}$ and ϵ preserve the relations (11).

Example $A_{7}^{\left(1^{\prime}\right)}$

- Again we have two central or Casimir elements $Z=y_{1} y_{3}, q=y_{1} y_{3} y_{2} y_{4}$
- Similarly to classical case consider the discrete flow $T=(1,2)(3,4) \circ \mu_{1} \circ \mu_{3}$. In quantum case it reads

$$
\left(y_{1}^{1 / 2}, y_{2}^{1 / 2}, y_{3}^{1 / 2}, y_{4}^{1 / 2}\right) \mapsto\left(y_{2}^{1 / 2} \frac{1+p y_{3}}{1+p y_{1}^{-1}}, y_{1}^{-1 / 2}, y_{4}^{1 / 2} \frac{1+p y_{1}}{1+p y_{3}^{-1}}, y_{3}^{-1 / 2}\right) .
$$

where the ratios in the r.h.s. are well-defined, since y_{1} and y_{3} commute with each other

- For $q=1$ we have an invariant Hamiltonian

$$
\begin{equation*}
H=y_{2}^{1 / 2} y_{1}^{1 / 2}+y_{1}^{1 / 2} y_{2}^{-1 / 2}+y_{2}^{-1 / 2} y_{1}^{-1 / 2}+Z y_{1}^{-1 / 2} y_{2}^{1 / 2} \tag{13}
\end{equation*}
$$

This is a Hamiltonian of quantum relativistic two-particle affine Toda chain.

Quantum τ

- There are quantum analogs of the A-cluster τ-variables. Following [Berenstein Zelevinsky 04] we quantize $\left\{\tau_{l}\right\}$-variables and consider them as elements of the quantum cluster algebra with relations $\tau_{I} \tau_{J}=p^{\Lambda_{I J} / 2} \tau_{J} \tau_{I}$, where $I, J=1, \ldots, 6$ and the matrix Λ is

$$
\Lambda=\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 1 & 0 \tag{14}\\
0 & 0 & -1 & 0 & 1 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & 1 & -1 \\
-1 & -1 & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

- For quantum $\left\{\tau_{l}\right\}$-variables we now fix the notations $\tau_{1}=\mathcal{T}_{1}, \tau_{2}=\mathcal{T}_{2}$, $\tau_{3}=\mathcal{T}_{3}, \tau_{4}=\mathcal{T}_{4}$, so that first four will be quantum \mathcal{T}-functions. Two last are $\tau_{5}=q^{1 / 4}, \tau_{6}=Z^{1 / 4}$, they are still generally noncommutative with \mathcal{T}_{i}.
- We now define the discrete dynamics of the quantum \mathcal{T}-functions by

$$
\begin{align*}
& \overline{\left(\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}, \mathcal{T}_{4}, Z, q\right)}=\left(\mathcal{T}_{2}, \mathcal{T}_{1}^{-1}\left(\mathcal{T}_{2}^{2}+p^{2}(q Z)^{1 / 2} \mathcal{T}_{4}^{2}\right), \mathcal{T}_{4}, \mathcal{T}_{3}^{-1}\left(\mathcal{T}_{4}^{2}+p^{2}(q Z)^{1 / 2} \mathcal{T}_{2}^{2}\right), Z q, q\right) \tag{15}\\
& \quad \underline{\left(\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}, \mathcal{T}_{4}, Z, q\right)}=\left(\left(\mathcal{T}_{1}^{2}+p^{2} Z^{1 / 2} \mathcal{T}_{3}^{2}\right) \mathcal{T}_{2}^{-1}, \mathcal{T}_{1},\left(\mathcal{T}_{3}^{2}+p^{2} Z^{1 / 2} \mathcal{T}_{1}^{2}\right) \mathcal{T}_{4}^{-1}, \mathcal{T}_{3}, Z q^{-1}, q\right) \tag{16}
\end{align*}
$$

It is straightforward to check that this dynamics preserves commutation relations

- We have a bilinear relations $\underline{\mathcal{T}_{1}} \overline{\mathcal{T}_{1}}=\mathcal{T}_{1}^{2}+p^{2} Z^{1 / 2} \mathcal{T}_{3}^{2}, \underline{\mathcal{T}_{3}} \overline{\mathcal{T}_{3}}=\mathcal{T}_{3}^{2}+p^{2} Z^{1 / 2} \mathcal{T}_{1}^{2}$,

Solution of the quantization

- We have a bilinear relations

$$
\begin{equation*}
\underline{\mathcal{T}_{1}} \overline{\mathcal{T}_{1}}=\mathcal{T}_{1}^{2}+p^{2} Z^{1 / 2} \mathcal{T}_{3}^{2}, \quad \underline{\mathcal{T}_{3}} \overline{\mathcal{T}_{3}}=\mathcal{T}_{3}^{2}+p^{2} Z^{1 / 2} \mathcal{T}_{1}^{2} \tag{17}
\end{equation*}
$$

- Now we want to present explicit formula for the \mathcal{T}_{i}. Denote $q_{2}=q^{1 / 2}$, $q_{1}=q_{2}^{-1} p^{2}$. The solution will be the function depending on variables $q_{1}, q_{2}, u, s, Z, a, b m$ with nontrivial commutation relations:

$$
\begin{equation*}
q_{2}^{2} a=p^{-2} a q_{2}^{2}, \quad q_{1} q_{2}^{-1} a=p^{2} a q_{1} q_{2}^{-1}, \quad u s=p^{4} s u, \quad Z b=p^{2} b Z . \tag{18}
\end{equation*}
$$

- The discrete flow of this set of quantum variables is

$$
\overline{\left(q_{1}, q_{2}, u, s, Z, a, b\right)}=\left(q_{1}, q_{2}, u, s, q_{2}^{2} Z, a b, b\right)
$$

It is easy to check, that this discrete flow preserves the commutation relations

Conjecture

Bilinear equations (17) are solved in terms of 5d Nekrasov functions:

$$
\begin{aligned}
& \mathcal{T}_{1}=a \sum_{m \in \mathbb{Z}} s^{m} F\left(u q_{2}^{4 m} ; q_{1} q_{2}^{-1}, q_{2}^{2} \mid Z\right), \mathcal{T}_{2}=a b \sum_{m \in \mathbb{Z}} s^{m} F\left(u q_{2}^{4 m} ; q_{1} q_{2}^{-1}, q_{2}^{2} \mid q_{2}^{2} Z\right), \\
& \mathcal{T}_{3}=i a \sum_{m \in \mathbb{Z}+1 / 2} s^{m} F\left(u q_{2}^{4 m} ; q_{1} q_{2}^{-1}, q_{2}^{2} \mid Z\right), \mathcal{T}_{4}=i a b \sum_{m \in \mathbb{Z}+1 / 2} s^{m} F\left(u q_{2}^{4 m} ; q_{1} q_{2}^{-1}, q_{2}^{2} \mid q_{2}^{2} Z\right) .
\end{aligned}
$$

Abstract

We discuss the relation between the cluster integrable systems and q-difference Painlevé equations. The Newton polygons corresponding to these integrable systems are all 16 convex polygons with a single interior point. The Painlevé dynamics is interpreted as deautonomization of the discrete flows, generated by a sequence of the cluster quiver mutations, supplemented by permutations of quiver vertices.
We also define quantum q-Painlevé systems by quantization of the corresponding cluster variety. We present formal solution of these equations for the case of pure gauge theory using q-deformed conformal blocks or 5-dimensional Nekrasov functions. We propose, that quantum cluster structure of the Painlevé system provides generalization of the isomonodromy/CFT correspondence for arbitrary central charge.

Thank you for your attention!

Discussion

- Extended global symmetries [Seiberg 96] and others.
- Quivers by [Ceccotti Vafa 11].
- Topological strings - spectral theory duality [Grassi Marino Hatsuda 11], [Bonelli Grassi Tanzini 17]
- Different approaches to quantization [Kuroki 08], [Hasegawa 07], [Nagoya, Yamada 12]

