Conformal Lagrangians from (formal) near boundary analysis of AdS gauge fields

Alexander Chekmenev

Lebedev Physical Institute, Moscow

Based on: A.C., Maxim Grigoriev: arXiv:1512.06443 + to appear

Overview

- Standard approach: Lagrangian for conformal fields arise as logarithmically-divergent term in the on-shell action.

$$
S\left[\phi_{0}\right]=\int d \rho d^{d} x \sqrt{g} S^{b u l k}\left[\phi\left[\phi_{0}\right]\right],\left.\quad \frac{1}{\rho^{\Delta_{-} / 2}} \phi\right|_{z=0}=\phi_{0}
$$

Drawback: need to know the Lagrangian for a field in AdS.

- Alternative approach: conformal equations can be seen as obstructions of extending an off-shell field on the conformal boundary of the AdS to a bulk on-shell field configuration. Can be formulated entirely at the level of EOM.
- That obstructions are found in explicit form (a simple generating procedure is proposed, to be precise) for conformal linear fields being the leading boundary values of AdS massive and unitary-type massless fields and Lagrangians (a generating procedure) for them is presented.

Plan

■ Review of the ambient space approach to boundary values

- Mixed symmetry gauge fields on AdS and their boundary values

■ Conformal Lagrangians

Ambient space

$A d S_{d+1}$ space can be realized as a quadric in a flat pseudo-Euclidean space $\mathbb{R}^{d, 2}$ with Cartesian coordinates $X^{A}, A=0, \ldots, d+1$ and the metric $\eta_{A B}=\operatorname{diag}(-+\ldots+-)$:

$$
\eta_{A B} X^{A} X^{B} \equiv X \cdot X \equiv X^{2}=-1
$$

Pros: $o(d, 2)$ acts linearly.
The conformal boundary \mathcal{X} of $A d S_{d+1}$ can be identified with the quotient of the hypercone $X^{2}=0$ by equivalence relation $X \sim \lambda X, \lambda \in \mathbb{R} \backslash 0$.
Can be seen as a surface. E.g. (Minkowski metric):

$$
X^{2}=0, \quad X^{+}=1
$$

Ambient scalar

Scalar in $\operatorname{AdS}_{d+1}=\left\{X \in \mathbb{R}^{d, 2} \mid X^{2}=-1\right\}$

$$
\left(\nabla^{2}-m^{2}\right) \varphi(x)=0
$$

can be equivalently described in terms of $\mathbb{R}^{d, 2}$

$$
\begin{gathered}
\partial_{X} \cdot \partial_{X} \Phi(X)=0, \\
\left(X \cdot \frac{\partial}{\partial X}+\Delta\right) \Phi(X)=0, \\
m^{2}=\Delta(\Delta-d) .
\end{gathered}
$$

Parent formulation

$$
\begin{gathered}
\left(\frac{\partial}{\partial X^{A}}-\frac{\partial}{\partial Y^{A}}\right) \Phi=0 \\
\frac{\partial}{\partial Y} \cdot \frac{\partial}{\partial Y} \Phi=0, \quad\left((X+Y) \cdot \frac{\partial}{\partial Y}+\Delta\right) \Phi=0
\end{gathered}
$$

where Φ is now depends on Y.
Interpret the first equation as a covariant constancy condition determined by a particular iso $(d, 2)$ connection.

$$
\nabla=\mathbf{d}-E^{A} \frac{\partial}{\partial Y^{A}}-w_{A}^{B} Y^{A} \frac{\partial}{\partial Y^{B}}
$$

namely the one where $E^{A}=d X^{A}, w^{A B}=0$.

Parent formulation

$$
\begin{gathered}
\nabla \Phi=0 \\
\frac{\partial}{\partial Y} \cdot \frac{\partial}{\partial Y} \Phi=0, \quad\left((V(X)+Y) \cdot \frac{\partial}{\partial Y}+\Delta\right) \Phi=0,
\end{gathered}
$$

where $V^{A}(X)$ are components of the section of the vector bundle s.t. in the suitable local frame coincide with Cartesian coordinates X^{A}. In particular $V^{2}=X^{2}$.

Compatibility conditions are

$$
\mathbf{d} w^{A}{ }_{B}+w^{A}{ }_{C} w^{C}{ }_{B}=0, \quad \mathbf{d} V^{A}+w^{A}{ }_{B} V^{B}=E^{A} .
$$

Parent formulation

Idea: to use the ambient space construction in the fiber rather in spacetime.

By pulling back the bundle to the submanifold $X^{2}=-1$ we get the system defined explicitly on $X^{2}=-1$.

Identifying the conformal space \mathcal{X} as a submanifold of the hypercone $X^{2}=0$ we arrive to the formulation in terms of fields defined on \mathcal{X}.

That formulation can be considered as a generating procedure for the equations satisfied by boundary values.

Parent formulation

Let us pick a local coordinate system x^{a} on \mathcal{X} and the local frame s.t. the only nonvanishing components of the flat connection w are $w^{a}{ }_{+}=d x^{a}, w^{-}{ }_{a}=-d x_{a}$ and $V^{+}=1, V^{-}=V^{a}=0$.

$$
\nabla=d x^{a}\left(\frac{\partial}{\partial x^{a}}-\left(Y^{+}+1\right) \frac{\partial}{\partial y^{a}}+y_{a} \frac{\partial}{\partial u}\right)
$$

where $u \equiv Y^{-}$.

$$
\nabla \Phi=0
$$

$$
\left(\frac{\partial}{\partial Y^{+}} \frac{\partial}{\partial u}+\frac{\partial}{\partial y} \cdot \frac{\partial}{\partial y}\right) \Phi=0, \quad\left(\frac{\partial}{\partial Y^{+}}+Y \cdot \frac{\partial}{\partial Y}+\Delta\right) \Phi=0
$$

The first and the third equations have a unique solution for a given $\phi(x, u)=\left.\Phi\right|_{y^{a}=Y^{+}=0}$. So in terms of ϕ the second implies

$$
\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial x} \phi+\frac{\partial}{\partial u}\left(d-2 \Delta-2 u \frac{\partial}{\partial u}\right) \phi=0
$$

Parent formulation: boundary values

$$
\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial x} \phi+\frac{\partial}{\partial u}\left(d-2 \Delta-2 u \frac{\partial}{\partial u}\right) \phi=0
$$

This equation does not impose any constraints on $\phi_{0}(x)=\left.\phi\right|_{u=0}$ for $\Delta \neq \frac{d}{2}-\ell$ with $\ell \in \mathbb{Z}>0$.

However, if $\Delta=\frac{d}{2}-\ell, \ell \in \mathbb{Z}^{>0}$ then ϕ_{0} is subject to

$$
\square^{\ell} \phi_{0}=0 .
$$

In other words the parent system is equivalent through the elimination of auxiliary fields to the system of two scalar fields ϕ_{0} subjected to $\square^{\ell} \phi_{0}=0$ and unconstrained ϕ_{ℓ} (ℓ-th coefficient in the expansion of ϕ in powers of u).

Ambient description of mixed symmetry fields

This picture can be generalized to the case of gauge fields.
Consider generating functions depending on X^{A} and P_{i}^{A}, $i=1, \ldots, n-1$

$$
\Phi(X, P) \equiv \Phi\left(X, P_{1}, \ldots, P_{n-1}\right)
$$

$o(d, 2)$ algebra acts by

$$
J_{A B}=X_{A} \frac{\partial}{\partial X^{B}}-X_{B} \frac{\partial}{\partial X^{A}}+\sum_{i=1}^{n-1}\left(P_{i A} \frac{\partial}{\partial P_{i}^{B}}-P_{i B} \frac{\partial}{\partial P_{i}^{A}}\right)
$$

Ambient description of mixed symmetry fields

Configurations of a unitary massless field of spin $\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ (it is assumed that $s_{1} \geq s_{2} \geq \ldots s_{n-1}$ and $n-1 \leq\left[\frac{d}{2}\right]$) are determined by the following constraints:

Algebraic: $\quad \partial_{P}^{i} \cdot \partial_{P}^{j} \Phi=0, \quad P_{i} \cdot \partial_{P}^{j} \Phi=0 i<j, \quad\left(P_{i} \cdot \partial_{P}^{i}-s_{i}\right) \Phi=0$,
Tangent:

$$
X \cdot \partial_{P}^{i} \Phi=0
$$

Radial:

$$
\left(X \cdot \partial_{X}+\Delta\right) \Phi=0 \quad \Delta=1+p-s
$$

EOM and partial gauge: $\quad \square \Phi=0, \quad \partial_{P}^{i} \cdot \partial_{X} \Phi=0$.
Here p denotes the height of the uppermost block in the Young tableau $\left(s_{1}, \ldots, s_{n-1}\right)$. I.e. $s_{1}=\ldots s_{p}>s_{p+1}$.

Conformal equations

Leading boundary value is determined by boundary data $\phi_{00}(x, p)=\left.\phi_{0}(x, p, w)\right|_{w_{i}=0}$, subjected to

$$
\left(n_{i}-s_{i}\right) \phi_{00}=0, \quad\left(\partial_{p_{i}} \cdot \partial_{p_{j}}\right) \phi_{00}=0, \quad\left(p_{i} \cdot \partial_{p_{j}}\right) \phi_{00}=0 \quad i<j
$$

Gauge invariant equations on ϕ_{00}

$$
\begin{gathered}
\left.\left(\tilde{\square}^{\ell} \phi_{0}\right)\right|_{w_{i}=0}=0,\left.\quad \phi_{0}\right|_{w_{i}=0}=\phi_{00}, \\
\left(\partial_{p_{i}} \cdot \partial\right) \phi_{0}+\frac{\partial}{\partial w_{i}}\left(d+s_{i}-\Delta-i-\sum_{j \leq i} n_{w_{j}}\right) \phi_{0}+\sum_{i<j}\left(p_{j} \cdot \partial_{p_{i}}\right) \frac{\partial}{\partial w_{j}} \phi_{0}=0
\end{gathered}
$$

The last equation fixes the w-dependence.
So there is a bijection $\pi:\left.\phi_{0} \mapsto \phi_{0}\right|_{w_{i}=0}$ between solutions $\phi_{0}(x, p, w)$ and off-shell fields $\phi_{00}(x, p)$.

Conformal equations

That conformal equations above have the form $\mathcal{A} \phi_{00}=0$ for the operator \mathcal{A} that makes the following diagram commutative

$$
\begin{aligned}
& \Phi_{0} \xrightarrow{\tilde{\square}^{\ell}} \Phi_{0} \\
& \pi^{-1} \uparrow \quad \downarrow \pi \\
& \Phi_{00-\mathcal{A}}{ }_{-1} \Phi_{00}
\end{aligned}
$$

where Φ_{00} denotes the space of Lorentz irreducible tensor fields and Φ_{0} the space of polynomials in w_{i} variables with coefficients being smooth functions.
E.g. for $d=4, \operatorname{spin} 1$:

$$
\mathcal{A}: \phi_{00} \mapsto\left(\square-(p \cdot \partial)\left(\partial_{p} \cdot \partial\right)\right) \phi_{00}
$$

In components:

$$
\mathcal{A}: p^{a} \varphi_{a} \mapsto p^{a}\left(\square \varphi_{a}-\partial_{a} \partial^{b} \varphi_{b}\right)
$$

Conformal Lagrangians

Let us consider the inner product

$$
\langle\phi, \chi\rangle=\int d x^{d}\langle\phi, \chi\rangle^{\prime}
$$

where $\langle\cdot, \cdot\rangle^{\prime}$ is the standard inner product on polynomials, defined by the metric $\eta_{a b}$.
\mathcal{A} acts on the space of Lorentz-irreducible tensor fields and is formally symmetric.

$$
f(x)^{\dagger}=f(x), \quad \partial_{a}^{\dagger}=-\partial_{a}, \quad p_{i}^{a \dagger}=\eta^{a b} \frac{\partial}{\partial p_{i}^{b}}
$$

(Gauge invariant) equations $\mathcal{A} \phi_{00}=0$ follow from the (gauge invariant) Lagrangian

$$
L=\left\langle\phi_{00}, \mathcal{A} \phi_{00}\right\rangle=\left\langle\phi_{00},\left.\left(\tilde{\square}^{\ell} \phi_{0}\right)\right|_{w_{i}=0}\right\rangle=\left.\left\langle\phi_{0}, \tilde{\square}^{\ell} \phi_{0}\right\rangle\right|_{w_{i}=0} .
$$

Example: "hook"-type field

$$
\square \sim \square+\delta \boxminus
$$

The equations of motion

$$
\begin{gathered}
\square^{2} \phi_{a b, c}-\square \partial^{e}\left(\partial_{a} \phi_{e b, c}+\partial_{b} \phi_{e a, c}\right)+\frac{1}{2} \square \partial^{e}\left(\partial_{a} \phi_{b c, e}+\partial_{b} \phi_{a c, e}\right) \\
-2 \square \partial^{e} \partial_{c} \phi_{a b, e}+\frac{1}{2}\left(\eta_{a b} \square+2 \partial_{a} \partial_{b}\right) \partial^{e} \partial^{f} \phi_{e f, c} \\
-\frac{1}{4} \partial^{e} \partial^{f}\left[\left(\eta_{a c} \square+2 \partial_{a} \partial_{c}\right) \phi_{e f, b}+\left(\eta_{b c} \square+2 \partial_{b} \partial_{c}\right) \phi_{e f, a}\right]=0
\end{gathered}
$$

The gauge transformation

$$
\delta \phi_{a b, c}=\partial_{a} \lambda_{b c}+\partial_{b} \lambda_{a c}-\frac{1}{3} \partial^{e}\left(2 \eta_{a b} \lambda_{e c}-\eta_{a c} \lambda_{e b}-\eta_{b c} \lambda_{e a}\right)
$$

Example: 'hook"-type field

$$
\begin{aligned}
& L=\int d^{4} x\left\langle\phi_{00},\left(\square^{2}-\square\left(p_{1} \cdot \partial\right)\left(\partial_{p_{1}} \cdot \partial\right)-\frac{5}{2} \square\left(p_{2} \cdot \partial\right)\left(\partial_{p_{2}} \cdot \partial\right)\right.\right. \\
& \left.\left.+\frac{5}{3}\left(p_{1} \cdot \partial\right)\left(\partial_{p_{1}} \cdot \partial\right)\left(p_{2} \cdot \partial\right)\left(\partial_{p_{2}} \cdot \partial\right)+\frac{1}{3}\left(p_{1} \cdot \partial\right)^{2}\left(\partial_{p_{1}} \cdot \partial\right)^{2}\right) \phi_{00}\right\rangle
\end{aligned}
$$

In components $\left(\phi_{00}=p_{1}^{a} p_{1}^{b} p_{2}^{c} \phi_{a b c}, \phi_{a b c}=\phi_{b a c}\right.$,
$\left.\phi_{a b c}+\phi_{a c b}+\phi_{b c a}=0\right):$

$$
\begin{aligned}
\frac{1}{2} L=\phi^{a b c} \square^{2} \phi_{a b c}+ & 2 \partial_{e} \phi^{e b c} \square \partial^{f} \phi_{f b c} \\
& +\frac{5}{2} \partial_{e} \phi^{a b e} \square \partial^{f} \phi_{a b f}+\frac{3}{2} \partial_{a} \partial_{b} \phi^{a b c} \partial^{e} \partial^{f} \phi_{e f c}
\end{aligned}
$$

Fin

Thanks for attention!

