Moving mirrors in 2d QFT

Lev Astrakhantsev, Emil T. Akhmedov
Institute of Theoretical and Experimental Physics Moscow Institute of Physics and Technology

2 February 2018

Ideal mirror

K-G equation and boundary condition

$$
\left(\partial_{\mathrm{t}}^{2}-\partial_{\mathrm{x}}^{2}+\mathrm{m}^{2}\right) \phi(\mathrm{t}, \mathrm{x})=0, \phi(\mathrm{t}, \mathrm{z}(\mathrm{t}))=0
$$

$(\mathrm{t}, \mathrm{z}(\mathrm{t}))$-trajectory of the ideal mirror

Set up of the problem

- Expand field $\phi(\mathrm{t}, \mathrm{x})$ in terms of space-time harmonics according to the mirror trajectory $\mathrm{z}(\mathrm{t})$
- Quantize the field, satisfy the canonical commutation relations
- Investigate the vacuum average of tx-component of the stress-energy tensor $\left\langle\mathrm{T}_{\mathrm{tx}}\right\rangle$, responsible for the flux of energy density
- Obtain the Hamiltonian, the system evolution operator

Mirror at rest

In this case available only area for $\mathrm{x} \geq 0$,

Field and boundary condition

$$
\phi(\mathrm{t}, \mathrm{x})=\mathrm{i} \int_{0}^{\infty} \frac{\mathrm{dk}}{2 \pi} \sqrt{\frac{2}{\omega}} \sin (\mathrm{kx})\left[\mathrm{a}_{\mathrm{k}} \mathrm{e}^{-\mathrm{ikt}}-\mathrm{a}_{\mathrm{k}}^{\dagger} \mathrm{e}^{\mathrm{ikt}}\right], \phi(\mathrm{t}, 0)=0
$$

$$
\begin{gathered}
{\left[\mathrm{a}_{\mathrm{k}}, \mathrm{a}_{\mathrm{k}^{\prime}}^{\dagger}\right]=2 \pi \delta\left(\mathrm{k}-\mathrm{k}^{\prime}\right)} \\
{[\phi(\mathrm{t}, \mathrm{x}), \pi(\mathrm{t}, \mathrm{y})]=\mathrm{i}[\delta(\mathrm{x}-\mathrm{y})-\delta(\mathrm{x}+\mathrm{y})]}
\end{gathered}
$$

where $\pi(\mathrm{t}, \mathrm{y})=\partial_{\mathrm{t}} \phi(\mathrm{t}, \mathrm{y})$

- canonical momentum

Mirror at rest

Symmetrized stress-energy tensor

$$
\mathrm{T}_{\mu \nu}=\frac{1}{2}\left(\partial_{\mu} \phi \partial_{\nu} \phi+\partial_{\nu} \phi \partial_{\mu} \phi\right)-\frac{1}{2} \mathrm{~g}_{\mu \nu}\left(\partial_{\alpha} \phi \partial^{\alpha} \phi+\mathrm{m}^{2} \phi^{2}\right), \partial^{\mu} \mathrm{T}_{\mu \nu}=0
$$

$$
\begin{aligned}
& \mathrm{H}=\int_{0}^{\infty} \mathrm{T}_{\mathrm{tt}} \mathrm{dx} \\
& \mathrm{~T}_{\mathrm{tx}}=\frac{1}{2}\left(\partial_{\mathrm{t}} \phi \partial_{\mathrm{x}} \phi+\partial_{\mathrm{x}} \phi \partial_{\mathrm{t}} \phi\right) . \\
& \left\langle\mathrm{T}_{\mathrm{tx}}\right\rangle=0 \\
& \mathrm{H}=\int_{0}^{+\infty} \frac{\mathrm{dk}}{2 \pi} \frac{\omega}{2}\left(\mathrm{a}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}}^{\dagger}+\mathrm{a}_{\mathrm{k}}^{\dagger} \mathrm{a}_{\mathrm{k}}\right)
\end{aligned}
$$

Mirror with constant velocity

In this case consider the velocity $0<\beta<1, \phi(\mathrm{t},-\beta \mathrm{t})=0$

Field

$$
\phi(\mathrm{t}, \mathrm{x})=\mathrm{i} \int_{\gamma \beta \mathrm{m}}^{+\infty} \frac{\mathrm{dk}}{2 \pi} \frac{1}{\sqrt{2 \omega}} \mathrm{a}_{\mathrm{k}}\left(\mathrm{e}^{-\mathrm{i} \omega \mathrm{t}-\mathrm{ikx}}-\mathrm{e}^{-\mathrm{i} \omega_{\mathrm{r}} \mathrm{t}+\mathrm{i} \mathrm{k}_{\mathrm{r}} \mathrm{x}}\right)+\text { h.c. }
$$

$$
[\phi(\mathrm{t}, \mathrm{x}), \pi(\mathrm{t}, \mathrm{y})]=\mathrm{i}\left[\delta(\mathrm{x}-\mathrm{y})-\delta\left(2 \beta \gamma^{2} \mathrm{t}+\left(1+\beta^{2}\right) \gamma^{2} \mathrm{x}+\mathrm{y}\right)\right]
$$

$$
\begin{aligned}
\omega_{\mathrm{r}} & =\left(1+\beta^{2}\right) \gamma^{2} \omega-2 \beta \gamma^{2} \mathrm{k} \\
\mathrm{k}_{\mathrm{r}} & =2 \beta \gamma^{2} \omega+\left(1+\beta^{2}\right) \gamma^{2} \mathrm{k}
\end{aligned}
$$

Mirror with constant velocity

$$
\left\langle\mathrm{T}_{\mathrm{tx}}\right\rangle=\lim _{\varepsilon \rightarrow 0} \frac{1}{2}\left\langle\partial_{\mathrm{t}} \phi(\mathrm{t}, \mathrm{x}) \partial_{\mathrm{x}} \phi(\mathrm{t}+\mathrm{i} \varepsilon, \mathrm{x})+\partial_{\mathrm{x}} \phi(\mathrm{t}, \mathrm{x}) \partial_{\mathrm{t}} \phi(\mathrm{t}+\mathrm{i} \varepsilon, \mathrm{x})\right\rangle
$$

Vacuum average of tx-component

$$
\left\langle\mathrm{T}_{\mathrm{tx}}\right\rangle=-\frac{1}{2 \pi} \gamma^{2} \beta \mathrm{~m}^{2} \mathrm{~K}_{0}(2 \mathrm{~m} \gamma(\mathrm{x}+\beta \mathrm{t})), \mathrm{K}_{0} \text {-McDonald function }
$$

For each fixed x , as $\mathrm{t} \rightarrow+\infty,\left\langle\mathrm{T}_{\mathrm{tx}}\right\rangle \rightarrow 0$
Boost the mirror at rest
$\left\langle\mathrm{T}_{\mathrm{tx}}\right\rangle=\beta \gamma^{2}\left(\left\langle\mathrm{~T}_{\mathrm{t}^{\prime} \mathrm{t}^{\prime}}\right\rangle+\left\langle\mathrm{T}_{\mathrm{x}^{\prime} \mathrm{x}^{\prime}}\right\rangle-\right.$
$\left.-\left\langle\mathrm{T}_{\mathrm{t}^{\prime} \mathrm{t}^{\prime}}\right\rangle_{0, \mathrm{M}}-\left\langle\mathrm{T}_{\mathrm{x}^{\prime} \mathrm{x}^{\prime}}\right\rangle_{0, \mathrm{M}}\right)=$
$-\frac{1}{2 \pi} \mathrm{~m}^{2} \beta \gamma^{2} \mathrm{~K}_{0}\left(2 \mathrm{mx}^{\prime}\right)$
Necessary to subtract vacuum average or to do big mass
regularization

Mirror with constant velocity

$$
\mathrm{H}=\int_{-\beta \mathrm{t}}^{\infty} \mathrm{T}_{\mathrm{tt}} \mathrm{dx}=\frac{1}{2} \int_{-\beta \mathrm{t}}^{+\infty}\left[\left(\partial_{\mathrm{t}} \phi\right)^{2}-\phi \partial_{\mathrm{t}}^{2} \phi\right] \mathrm{dx}, \mathrm{P}=\int_{-\beta \mathrm{t}}^{\infty} \mathrm{dx} \mathrm{~T}_{\mathrm{tx}}
$$

Translation operator

$\mathrm{H}-\beta \mathrm{P}=\int_{\gamma \beta \mathrm{m}}^{\infty} \frac{\mathrm{dk}}{2 \pi} \frac{\gamma^{2}(\omega-\beta \mathrm{k})(\omega-\beta \mathrm{k}-\beta(1-\beta) \omega)}{2 \omega_{\mathrm{r}}}\left[\mathrm{a}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}}^{\dagger}+\mathrm{a}_{\mathrm{k}}^{\dagger} \mathrm{a}_{\mathrm{k}}\right]$
Operator of the translations along the mirror is diagonal unlike the Hamiltonian and Momentum separately

For massless field

$$
\begin{gathered}
\mathrm{H}-\beta \mathrm{P}= \\
(1-\beta) \int_{0}^{\infty} \frac{\mathrm{dk}}{2 \pi} \frac{\mathrm{k}}{2}\left[\mathrm{a}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}}^{\dagger}+\mathrm{a}_{\mathrm{k}}^{\dagger} \mathrm{a}_{\mathrm{k}}\right]
\end{gathered}
$$

Conclusions

- Moving mirror violate the homogeneity along the time axis, thus Hamiltonian has non-diagonal terms
- Hamiltonian - operator of translations along the wall
- Chosen method of regularization has a physical sense
- During the Lorenz transformations it is necessary to subtract vacuum terms or to do big mass regularization
- In canonical commutation relation appear the boundary delta-function, need to consider non-ideal mirror.

Plans

- Consider massive case for "broken" non-ideal mirror case
- Consider the interaction $\lambda \phi^{4}$, obtain the corrections to Keldysh propagator

Thank you for attention!

