$K(E_{10})$ as an **R** symmetry

Princeton University, 5 April 2016

Hermann Nicolai MPI für Gravitationsphysik, Potsdam (Albert Einstein Institut)

Based on:

A. Kleinschmidt, HN: JHEP1308(2013)041; 1504.01586;1602.04116 A. Kleinschmidt, HN and N.K.Chidambaram: PRD91(2015)8,085039 and earlier work with T. Damour, M. Henneaux and A. Kleinschmidt

Main Points

- Duality symmetries more important than space-time symmetries (general covariance, supersymmetry,...)
- E_{10} : a symmetry based proposal for (de-)emergence of space (and time) near cosmological singularity.
- Fermions transform under 'R symmetry' $K(E_{10})$.
- Distinction between space-time bosons and fermions meaningless in 'pre-geometric' regime ?
- Understanding $K(E_{10})$: perhaps the key challenge?
- Exploiting the identity $3 \times 16 = 56 8$, or: Is there a role to play for $K(E_{10})$ in 'real' physics?

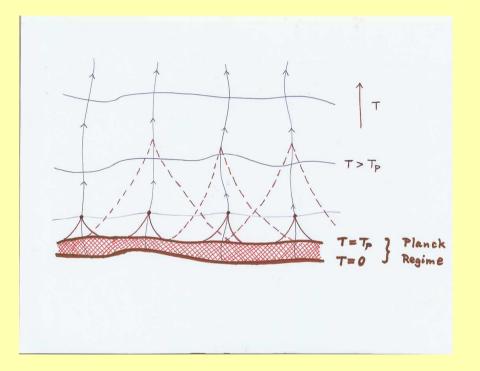
Exceptionality and Maximal Supergravity

- Maximal theories: $E_{n(n)}$ for D = 11 n [Cremmer, Julia(1979)]
- $E_n(\mathbb{Z})$ conjectured to be a symmetry of non-perturbative string theory \equiv M theory. [Hull, Townsend; Green et al.]

Below D = 3 symmetries become *infinite-dimensional*:

- $E_{9(9)} \equiv E_8^{(1)}$: a solution generating symmetry acting on $\mathcal{M} = E_{9(9)}/K(E_9)$ = moduli space of colliding plane wave solutions of maximal D = 2 supergravity.
- ... suggests $E_{10(10)}$ for D = 1: no space, only time?
- Expect coset structure $E_{n(n)}/K(E_n)$ to persist also for infinite-dimensional case $(n \ge 9)$.

BKL and Spacelike Singularities



For $T \rightarrow 0$ spatial points decouple and the system is effectively described by a continuous superposition of one-dimensional systems \rightarrow effective dimensional reduction to D = 1! [Belinski,Khalatnikov,Lifshitz (1972)]

Habitat of Quantum Gravity?

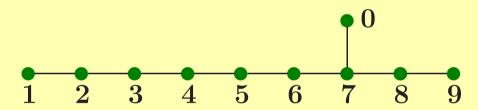
• Cosmological evolution as one-dimensional motion in the moduli space of 3-geometries [Wheeler, DeWitt,...]

$$\mathcal{M} \equiv \mathcal{G}^{(3)} = \frac{\{\text{spatial metrics } g_{ij}(\mathbf{x})\}}{\{\text{spatial diffeomorphisms}\}}$$

- \bullet Formal canonical quantization \rightarrow WDW equation.
- Unification of space-time, matter and gravitation: \mathcal{M} should incorporate matter degrees of freedom in a natural manner (not simply $\mathcal{M} = \mathcal{G}^{(3)} \times \mathcal{M}_{matter}$).
- Can we understand and 'simplify' \mathcal{M} by means of embedding into a group theoretical coset G/K(G)?
- Main conjecture: $G = E_{10}$ and $K(G) = K(E_{10})$

What is E_{10} ?

The nice thing about it is that no one knows [Murat Günaydin, unpublished] E_{10} is the 'group' associated with the Kac-Moody Lie algebra $\mathfrak{g} \equiv \mathfrak{e}_{10}$ defined via the Dynkin diagram [e.g. Kac]



Defined by generators $\{e_i, f_i, h_i\}$ and relations via Cartan matrix A_{ij} ('Chevalley-Serre presentation')

$$\begin{array}{ll} [h_i, h_j] &= 0, & [e_i, f_j] = \delta_{ij} h_i, \\ [h_i, e_j] &= A_{ij} e_j, & [h_i, f_j] = -A_{ij} f_j, \\ (\operatorname{ad} e_i)^{1 - A_{ij}} e_j &= 0 & (\operatorname{ad} f_i)^{1 - A_{ij}} f_j = 0. \end{array}$$

 \mathfrak{e}_{10} is the free Lie algebra generated by $\{e_i, f_i, h_i\}$ modulo these relations \rightarrow infinite dimensional as A_{ij} is *indefinite* \rightarrow Lie algebra of *exponential growth* !

SL(10) level decomposition of E_{10}

• Decomposition w.r.t. SL(10) subgroup in terms of SL(10) tensors \rightarrow *level expansion*

$$\alpha = \ell \alpha_0 + \sum_{j=1}^{9} m^j \alpha_j \quad \Rightarrow \quad E_{10} = \bigoplus_{\ell \in \mathbb{Z}} E_{10}^{(\ell)}$$

• Up to $\ell \leq 3$ basic fields of D = 11 SUGRA together with their magnetic duals (spatial components)

$\ell = 0$	G_{mn}	Graviton
$\ell = 1$	A_{mnp}	3-form
$\ell = 2$	$A_{m_1m_6}$	dual 6-form
$\ell = 3$	$h_{m_1\dots m_8 n}$	dual graviton

- Analysis up to level $\ell \leq 28$ yields 4 400 752 653 representations (Young tableaux) of SL(10) [Fischbacher,HN:0301017]
- Lie algebra structure (structure constants, etc.) understood only up to $\ell \leq 4$. Also: no matter where you stop it will get even more complicated beyond!

The $E_{10}/K(E_{10})$ σ -model

Basic Idea: map evolution according to D = 11 SUGRA equations of motion onto null geodesic motion of a point particle on $E_{10}/K(E_{10})$ coset manifold [DHN:0207267]

$$\mathcal{V}(t) = \exp\left(h_{ab}(t)S^{ab} + \frac{1}{3!}A_{abc}(t)E^{abc} + \frac{1}{6!}A_{abcdef}(t)E^{abcdef} + \cdots\right)$$

and then work out Cartan form $\partial_t \mathcal{V} \mathcal{V}^{-1} = Q + P$ with associated σ -model $\rightarrow E_{10}/K(E_{10}) \sigma$ -model dynamics up to $\ell \leq 3$ matches with supergravity equations of motion when truncated to first order spatial gradients.

Conjecture: information about spatial dependence gets 'spread' all over E_{10} Lie algebra. More specifically: Infinite tower of σ -model fields \leftrightarrow SUGRA fields and their non-local descendants (duals) at fixed spatial point? Hint: level expansion contains complete set of gradient representations for all D = 11 fields and their duals.

Some practical concerns

[Cf.: Kleinschmidt, HN, Chidambaram: 1411.5893]

Use Cartan-Weyl basis, with $[H_a, H_b] = 0$ (CSA)

$$[H_{a}, E_{\alpha}^{r}] = \alpha_{a} E_{\alpha}^{r} \quad , \quad [E_{\alpha}^{r}, E_{\beta}^{s}] = \begin{cases} \sum_{t} c_{\alpha,\beta}^{rst} E_{\alpha+\beta}^{t} & \text{if } \alpha + \beta \in \Delta, \\ \delta^{rs} \alpha^{a} H_{a} & \text{if } \alpha = -\beta, \\ 0 & \text{otherwise} \end{cases}$$

(Triangular) parametrization of Kac-Moody group via $\mathcal{V}(q^{a}(t), A^{r}_{\alpha}(t))$ "=" $\exp(q^{a}(t)H_{a})\exp\left(\sum_{\alpha>0}\sum_{r=1}^{\mathrm{mult}(\alpha)}A^{r}_{\alpha}(t)E^{r}_{\alpha}\right)$

does *not* work for imaginary roots α , because E_{α}^{r} are not locally nilpotent \Rightarrow exponentiate only real roots? \rightarrow blurs association of physical degrees of freedom with Lie algebra elements associated to imaginary roots! Nevertheless, we can write (in triangular gauge)

$$\partial \mathcal{V}\mathcal{V}^{-1}(t) = \pi^{\mathbf{a}}(t)H_{\mathbf{a}} + \sum_{\alpha>0} \sum_{r=1}^{\mathrm{mult}(\alpha)} P_{\alpha}^{r}(t)E_{\alpha}^{r}$$

with nice canonical brackets

$$\{\pi^{a}, \pi^{b}\} = 0, \quad \{\pi^{a}, P_{\alpha}^{r}\} = \alpha_{a}P_{\alpha}^{r}, \quad \{P_{\alpha}^{r}, P_{\beta}^{s}\} = \sum_{t} c_{\alpha,\beta}^{rst} P_{\alpha+\beta}^{t} (??)$$

 \rightarrow still to be checked (modified?) for imaginary roots.

 \Rightarrow 'good' canonical variables to couple to fermions!

Suspicion: consistent incorporation of fermions is one crucial missing piece of the puzzle ...

- ... and possibly requires novel kind of bosonization.
- [cf. Witten (1984), Goddard, Nahm, Olive (1985)]

Fermions and $K(E_{10})$

... probably a key issue for further progress...

Important point: maximal supersymmetric theories *not* based on (hypothetical) superextensions of E_n :

- There is no proper superextension of E_n for any n.
- For $D \ge 3$ supergravity fermions transform in maximal compact subgroup $K(E_n) \subset E_{n(n)}$, e.g.
 - $K(E_7) \equiv SU(8)$ fermions \in 8 and 56 $K(E_8) \equiv Spin(16)/Z_2$ fermions \in 16 $_v$ and 128 $_c$
- The associated (double-valued) fermion representations are not 'liftable' to E_n representations
- Expect all of this to remain true for E_9, E_{10}, \ldots

What is $K(E_{10})$?

The nice thing about it is that no one knows [HN, unpublished]

For E_{10} , the 'maximal compact' subalgebra is defined as the fixed point algebra of the Chevalley involution

 $\omega(e_j) = -f_j$, $\omega(f_j) = -e_j$, $\omega(h_j) = -h_j$

together with invariance property $[\omega(x),\omega(y)]=\omega([x,y])$

$$\Rightarrow E_{10} = K(E_{10}) \oplus K(E_{10})^{\perp}, \quad x = \omega(x) \text{ for } x \in K(E_{10})$$

This definition is analogous to the corresponding one for the finite-dimensional case, e.g. $x = \omega(x) \in \mathfrak{so}(n) \subset \mathfrak{sl}(n)$ for $\omega(x) = -x^T$, with corresponding decomposition $\mathfrak{sl}(n) = \mathfrak{so}(n) \oplus \mathfrak{so}(n)^{\perp}$

Consequently, $K(E_{10})$ is generated by

$$x_i := e_i - f_i = \omega(x_i)$$
 $i, j, \dots = 1, \dots, 10$

with Berman-Serre relations

 $\begin{bmatrix} x_i, x_j \end{bmatrix} = 0 \quad if i \text{ and } j \text{ are non-adjacent} \\ \begin{bmatrix} x_i, [x_i, x_j] \end{bmatrix} + x_j = 0 \quad if i \text{ and } j \text{ are adjacent} \end{bmatrix}$

Theorem: each set of $\{x_i\}$ satisfying the above relations provides a realization of $K(E_{10})$. [S.Berman(1989)]

Involutory subalgebra $K(E_{10}) \subset E_{10}$ is spanned by $\{J_{\alpha}^r\}$

$$J_{\alpha}^{r} \equiv E_{\alpha}^{r} - E_{-\alpha}^{r}, \quad \alpha \in \Delta_{+}(E_{10}), \quad r = 1, ..., \text{mult}(\alpha)$$

But: $K(E_{10})$ is ∞ -dimensional and a very strange beast!

- $K(E_{10})$ has finite-dimensional (unfaithful) representations
- \Rightarrow $K(E_{10})$ is *not* simple (\equiv has non-trivial ideals)
- No faithful (infinite-dimensional) representations are known !

 $\begin{bmatrix} \text{Idem for } K(E_9) \end{bmatrix}$ [Julia,HN(1996); Samtleben,HN(2004)] $\end{bmatrix}$

Unfaithful representations

 \iff existence of non-trivial ideals i_V in $K(E_{10})!$

More precisely: for unfaithful representation V the associated ideal is

 $\mathbf{i}_V := \left\{ x \in K(E_{10}) \mid x \cdot v = 0 \; \forall v \in V \right\} \subset K(E_{10})$ For known examples, \mathbf{i}_V has *finite* co-dimension in $K(E_{10})$

 $\Rightarrow i_V^{\perp} \equiv K(E_{10}) \ominus i_V$ is *not* a subalgebra of $K(E_{10})$!

... but rather a *distribution space* [Kleinschmidt,Palmkvist,HN:JHEP(2007)051]

Analysis of fermionic sector of D=11 SUGRA \Rightarrow

Spin- $\frac{1}{2}$ ('Dirac representation' V_D): [deBuy1,Henneaux,Paulot(2005)]

$$J_{ab}^{(0)}\chi = \frac{1}{2}\Gamma_{ab}\chi, \quad J_{abc}^{(1)}\chi = \frac{1}{2}\Gamma_{abc}\chi$$

 $\begin{aligned} \mathbf{Spin-}\frac{3}{2} \left(\mathbf{`Rarita-Schwinger representation'} V_{RS} \right) \left[\mathbf{DKN, dBHP(2006)} \right] \\ J_{ab}^{(0)}\psi_c &= \frac{1}{2}\Gamma_{ab}\psi_c + 2\delta_c^{[a}\psi^{b]} , \quad J_{abc}^{(1)}\psi_d = \frac{1}{2}\Gamma_{abc}\psi_d + 4\delta_d^{[a}\Gamma^b\psi^{c]} - \Gamma_d^{[ab}\psi^{c]} . \end{aligned}$

In both examples multiple commutators generate full $K(E_{10})$ algebra:

$$\left[J_{abc}^{(1)}, J_{def}^{(1)}\right] = J_{abcdef}^{(2)} + \delta_{[ab}^{[de} J_{c]}^{(0) f]} \qquad etc.$$

Quotient algebras:

$$K(E_{10})/\mathfrak{i}_{V_D} = \mathfrak{so}(32) \Leftrightarrow K(E_{10})$$
$$K(E_{10})/\mathfrak{i}_{V_{RS}} = \mathfrak{so}(288, 32) \Leftrightarrow K(E_{10})$$

Rarita-Schwinger equation can be reformulated as a (kind of) ' $K(E_{10})$ covariant Dirac equation'. [DKN: 0606105]

Subalgebras of $K(E_{10})$ [cf. Kleinschmidt, HN: 1602.04116]

(a)	$\mathfrak{so}(10)$	SUGRA in $D = 11$
(b)	$\mathfrak{so}(2) \oplus \mathfrak{so}(16)$	SUGRA in $D = 3$
(c)	$\mathfrak{so}(9) \oplus \mathfrak{so}(2)$	IIB SUGRA in $D = 10$
(d)	$\mathfrak{so}(9) \oplus \mathfrak{so}(9)$	mIIA SUGRA in $D = 10$

Decomposing the spin- $\frac{3}{2}$ representation

$$320 \stackrel{a}{\longrightarrow} 288 \oplus 32$$

$$\stackrel{b}{\longrightarrow} \left(\frac{1}{2}, \mathbf{128}_c\right) \oplus \left(\frac{1}{2}, \mathbf{16}_v\right) \oplus \left(\frac{3}{2}, \mathbf{16}_v\right)$$

$$\stackrel{c}{\longrightarrow} \left(\mathbf{16}, \frac{3}{2}\right) \oplus \left(\mathbf{128}, \frac{1}{2}\right) \oplus \left(\mathbf{16}, \frac{1}{2}\right)$$

$$\stackrel{d}{\longrightarrow} (\mathbf{9}, \mathbf{16}) \oplus (\mathbf{16}, \mathbf{9}) \oplus (\mathbf{1}, \mathbf{16}) \oplus (\mathbf{16}, \mathbf{1})$$

In particular: decompositions of $K(E_{10})$ w.r.t. $\mathfrak{so}(10)$, $\mathfrak{so}(9) \oplus \mathfrak{so}(2)$ and $\mathfrak{so}(9) \oplus \mathfrak{so}(9)$ yield correct fermion assignments for D = 11, mIIA and IIB supergravity. $\Rightarrow K(E_{10})$ unifies known R symmetries. [KN: hep-th/0603205]

Γ -matrices for $K(E_{10})$

Wall basis for roots $\alpha = \sum p_a e^a$, $\beta = \sum q_a e^a$ with simple roots $\alpha_1 = (1 - 10000000), \dots, \alpha_9 = (00000001 - 1), \alpha_0 = (000000111)$

and $\alpha \cdot \beta = G^{ab}p_aq_b \Rightarrow \alpha_i \cdot \alpha_j = A_{ij}$ (\equiv Cartan matrix of E_{10}). For any E_{10} root α (or any element of E_{10} root lattice) we define

 $\Gamma(\alpha) := (\Gamma_1)^{p_1} \cdots (\Gamma_{10})^{p_{10}}$

 $\textbf{Then } \Gamma(\alpha) \Gamma(\beta) = \varepsilon_{\alpha,\beta} \, \Gamma(\alpha \pm \beta) \textbf{ with cocycle } \varepsilon_{\alpha,\beta} \equiv (-1)^{\sum_{\mathtt{a} < \mathtt{b}} q_{\mathtt{a}} p_{\mathtt{b}}} \ \Rightarrow$

$$\alpha \cdot \beta \in 2\mathbb{Z} \Longrightarrow \begin{cases} \left[\Gamma(\alpha), \Gamma(\beta) \right] = 0\\ \left\{ \Gamma(\alpha), \Gamma(\beta) \right\} = 2\epsilon_{\alpha,\beta} \Gamma(\alpha \pm \beta) \end{cases}$$
$$\alpha \cdot \beta \in 2\mathbb{Z} + 1 \Longrightarrow \begin{cases} \left[\Gamma(\alpha), \Gamma(\beta) \right] = 2\epsilon_{\alpha,\beta} \Gamma(\alpha \pm \beta)\\ \left\{ \Gamma(\alpha), \Gamma(\beta) \right\} = 0 \end{cases}$$

Then $x_i \to \frac{1}{2}\Gamma(\alpha_i)$ provides a realization of Serre-like relations! Multiple commutation shows that $\frac{1}{2}\Gamma(\alpha)$ provides realisation for all real roots of E_{10} (of which there are infinitely many)!

Higher spin realizations of $K(E_{10})$

 \rightarrow For $s > \frac{3}{2}$ these go beyond supergravity!

But first need to re-write spin- $\frac{3}{2}$ by means of crucial redefinition [Damour,Hillmann:0906.3116]

$$\phi_A^{a} \equiv \sum_{B=1}^{32} \Gamma_{AB}^{a} \psi_B^{a}$$
 (no sum on a!)

Re-definition breaks manifest Lorentz symmetry, but:

$$\{\psi_A^a, \psi_B^b\}_{\text{Dirac}} = \delta^{ab}\delta_{AB} - \frac{1}{9}(\Gamma^a\Gamma^b)_{AB} \quad \Rightarrow \quad \{\phi_A^a, \phi_B^b\} = G^{ab}\delta_{AB}$$

 \Rightarrow manifest SO(1,9) = invariance group of mini-superspace WDW Hamiltonian with DeWitt metric G_{ab} instead!

From analysis of known $K(E_{10})$ transformation acting in RS representation we extract a second quantised realisation of $\hat{J}(\alpha)$ for all real roots $\alpha \in \Delta(E_{10})$: $\hat{J}(\alpha) = \left(-\frac{1}{2}\alpha_{a}\alpha_{b} + \frac{1}{4}G_{ab}\right)\phi^{a}\Gamma(\alpha)\phi^{b} \quad \forall \text{ roots obeying } \alpha^{2} = 2$ [NB: formula also valid for $K(AE_{3})$ [Damour,Spindel,1406.1309]] There exists a *new* realization with 'spin- $\frac{5}{2}$ ' fermionic operators [Kleinschmidt,HN.:1307.0413]

$$\{\phi_A^{\mathtt{ab}}, \, \phi_B^{\mathtt{cd}}\} = G^{\mathtt{a}(\mathtt{c}}G^{\mathtt{d})\mathtt{b}}\delta_{AB} \qquad (\phi_A^{\mathtt{ab}} = \phi_A^{\mathtt{ba}})$$

 \rightarrow a fermionic Fock space \mathcal{F} of dimension 2^{880} ! Then, Serre-like relations are satisfied on \mathcal{F} with

$$\hat{J}(\alpha) = X(\alpha)_{\rm ab\,cd}\,\phi^{\rm ab}\Gamma(\alpha)\phi^{\rm cd}$$

and

$$X(\alpha)_{\mathtt{ab\,cd}} = \frac{1}{2} \alpha_{\mathtt{a}} \alpha_{\mathtt{b}} \alpha_{\mathtt{c}} \alpha_{\mathtt{d}} - \alpha_{(\mathtt{a}} G_{\mathtt{b})(\mathtt{c}} \alpha_{\mathtt{d}}) + \frac{1}{4} G_{\mathtt{a}(\mathtt{c}} G_{\mathtt{d})\mathtt{b}}$$

again for all real roots α !

 \Rightarrow novel realisation of $K(E_{10})$ beyond supergravity!

'Spin-
$$rac{7}{2}$$
'

Construction also works for spin- $\frac{7}{2}$ fermions:

$$\left\{\phi_A^{\mathtt{abc}}, \phi_{\mathtt{def}\,B}\right\} = \delta_{(\mathtt{d}}^{(\mathtt{a}} \delta_{\mathtt{e}}^{\mathtt{b}} \delta_{\mathtt{f}}^{\mathtt{c})} \delta_{AB}$$

Then 'Serre-like' relations are again obeyed with $\hat{J}(\alpha)=X(\alpha)_{\rm abc\,def}\,\phi^{\rm abc}\Gamma(\alpha)\phi^{\rm def}$

and

$$\begin{split} X_{\mathsf{abc}}{}^{\mathsf{def}}(\alpha) &= -\frac{1}{3}\alpha_{\mathsf{a}}\alpha_{\mathsf{b}}\alpha_{\mathsf{c}}\alpha^{\mathsf{d}}\alpha^{\mathsf{e}}\alpha^{\mathsf{f}} + \frac{3}{2}\alpha_{(\alpha}\alpha_{\mathsf{b}}\delta_{\mathsf{c})}^{(\mathsf{d}}\alpha^{\mathsf{d}}\alpha^{\mathsf{e}}\alpha^{\mathsf{f})} - \frac{3}{2}\alpha_{(\mathsf{a}}\delta_{\mathsf{b}}^{(\mathsf{d}}\delta_{\mathsf{c})}^{\mathsf{e}}\alpha^{\mathsf{f})} \\ &+ \frac{1}{4}\delta_{(\mathsf{a}}^{(\mathsf{d}}\delta_{\mathsf{b}}^{\mathsf{e}}\delta_{\mathsf{c})}^{\mathsf{f})} + \frac{1}{12}(2 - \sqrt{3})\alpha_{(\mathsf{a}}G_{\mathsf{bc})}G^{(\mathsf{de}}\alpha^{\mathsf{f})} \\ &\frac{1}{12}(-1 + \sqrt{3})\left(\alpha_{\mathsf{a}}\alpha_{\mathsf{b}}\alpha_{\mathsf{c}}G^{(\mathsf{de}}\alpha^{\mathsf{f})} + \alpha_{(\mathsf{a}}G_{\mathsf{bc})}\alpha^{\mathsf{d}}\alpha^{\mathsf{e}}\alpha^{\mathsf{f}}\right) \end{split}$$

Fermionic Fock space has dimension $\dim(\mathcal{F}) = 2^{3520}$. As before, $\hat{J}(\alpha)$ provides a realisation *for all* real roots.

- 'Higher spin' *not* in ordinary space-time, but in (some variant of) Wheeler-DeWitt superspace!
- Restriction to $E_8 \subset E_{10}$ must yield representations of $K(E_8) \equiv Spin(16)/Z_2 \rightarrow$ for new realisations we find 560_v for $s = \frac{5}{2}$ and 1920_s for $s = \frac{7}{2} \rightarrow$ implies strong restrictions beyond: e.g. no solution for $s = \frac{9}{2}, \frac{11}{2}, \frac{13}{2}$!
- Another strange feature: decomposition under $SO(10) \subset K(E_{10})$: 1760 \rightarrow 1120 $\oplus 2 \times 288 \oplus 2 \times 32$. $\phi_A^{ab} \rightarrow \psi_A^a$ and $\psi_A^{[ab]}$ (= RS field strength?)
- Suggests nested structure of higher spin realizations that penetrate farther and farther into $K(E_{10})$...
 - ... but systematics (if any) is not known.
- Affine case \rightarrow novel representations for $K(E_9)$.

SUSY Constraint and $K(E_{10})$

SUSY Constraint from canonical analysis:

$$\tilde{\mathcal{S}} = \Gamma^{ab} \Big[\partial_a \psi_b + \frac{1}{4} \omega_{acd} \Gamma^{cd} \psi_b + \omega_{abc} \psi_c + \frac{1}{2} \omega_{ac0} \Gamma^c \Gamma^0 \psi_b \Big] \\ + \frac{1}{4} F_{0abc} \Gamma^0 \Gamma^{ab} \psi^c + \frac{1}{48} F_{abcd} \Gamma^{abcde} \psi_e$$

Rewrite in terms of E_{10} coset variables (up to $\ell = 3$)

$$S = \left(P_{ab}^{(0)}\Gamma^{a} - P_{cc}^{(0)}\Gamma_{b}\right)\Psi^{b} + \frac{1}{2}P_{abc}^{(1)}\Gamma^{ab}\Psi^{c} + \frac{1}{5!}P_{abcdef}^{(2)}\Gamma^{abcde}\Psi^{f} + \frac{1}{6!}\left(P_{a|ac_{1}\cdots c_{7}}^{(3)}\Gamma^{c_{1}\cdots c_{6}}\Psi^{c_{7}} - \frac{1}{28}P_{a|c_{1}\cdots c_{8}}^{(3)}\Gamma^{c_{1}\cdots c_{8}}\Psi^{a}\right)$$

Rewrite as a partial sum over (real and null) E_{10} roots:

$$\mathcal{S}_{A} = \pi_{\mathbf{a}} \phi_{A}^{\mathbf{a}} + \sum_{\substack{\alpha^{2}=2\\\ell \leq 3, \alpha > 0}} P_{\alpha} \big(\Gamma(\alpha) \phi(\alpha) \big)_{A} + \sum_{\substack{\delta^{2}=0\\\ell=3}} P_{\delta}^{r} \big(\Gamma(\delta) \phi(\epsilon^{r}) \big)_{A} \quad (+ \cdots ???)$$

with $\phi(v)_A \equiv v_a \phi_A^a \rightarrow \text{ can we extend sum to imaginary roots?}$ \rightarrow need higher-spin realisations to soak up polarisations?

SUSY constraint algebra

Canonical constraint superalgebra [Damour,Kleinschmidt,HN, CQG24(2007)046]

$$\{S_A, S_B\} = \delta_{AB}\mathcal{H} + \sum_{\delta} \mathfrak{L}_{\delta} \Gamma(\delta)_{AB} + \cdots$$

Supergravity Hamiltonian \mathcal{H} and E_{10} Casimir H agree up to $\ell = 2$, but start to differ for $\ell \geq 3 \rightarrow \text{more } K(E_{10})$ invariants???

The other (bosonic) canonical supergravity constraints \mathfrak{L}_{δ} are all associated with null roots of E_{10} : [Damour,Kleinschmidt,HN, CMP302(2011)755]

- Diffeomorphisms: $\delta = [0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 4 \ 2 \ 3] = affine null root (\ell = 3).$
- Gauss Constraint: $\delta' = [1234567424] \ (\ell = 4)$
- 'Dual Gauss Constraint' (Bianchi): $\delta'' = [1234579635]$ ($\ell = 5$)
- 'Dual diffeomorphisms' (Bianchi): $\delta''' = [1\,2\,3\,5\,7\,9\,11\,7\,3\,6] \ (\ell = 6)$

Recall affine Sugawara $\mathfrak{L}_{m\delta} \propto \sum : J^a_{m-n} J^a_n :$ and δ = affine null root \rightarrow is there a *hyperbolic* analog of the Sugawara construction?

N = 8 Supergravity: a strange coincidence? $SO(8) \rightarrow SU(3) \times U(1)$ breaking and 'family-color locking'

$(u,c,t)_L$:	${f 3}_c imes ar{f 3}_f o {f 8} \oplus {f 1} \;,$	$Q = \frac{2}{3} - q$
$(\bar{u},\bar{c},\bar{t})_L$:	$ar{3}_c imes 3_f o 8 \oplus 1 \; ,$	$Q = -\frac{2}{3} + q$
$(d,s,b)_L$:	$3_c imes 3_f ightarrow 6 \oplus ar{3} \; ,$	$Q = -\frac{1}{3} + q$
$(ar{d},ar{s},ar{b})_L$:	$ar{3}_c imes ar{3}_f ightarrow ar{6} \oplus 3 \; ,$	$Q = \frac{1}{3} - q$
$(e^-, \mu^-, \tau^-)_L$:	$1_c imes 3_f ightarrow 3 \; ,$	Q = -1 + q
$(e^+, \mu^+, \tau^+)_L$:	$1_c imes ar{3}_f ightarrow ar{3}$,	Q = 1 - q
$(u_e, u_\mu, u_ au)_L$:	$1_c imes ar{3}_f ightarrow ar{3}$,	Q = -q
$(\bar{\nu}_e,\bar{\nu}_\mu,\bar{\nu}_\tau)_L$:	$1_c imes 3_f ightarrow 3 \; ,$	Q = q

Supergravity and Standard Model assignments agree if spurion charge is chosen as $q = \frac{1}{6}$ [Gell-Mann (1983)] Realized at $SU(3) \times U(1)$ stationary point! [Warner,HN, NPB259(1985)412]

Fixing the spurion charge

[Meissner, HN: Phys.Rev.D91(2015)065029; Kleinschmidt, HN: 1504.01586]

But need to go beyond N=8 supergravity! Spurion charge shift can be realised via $U(1)_q$

$$\mathcal{I} = \frac{1}{2} \left(T \wedge \mathbf{1} \wedge \mathbf{1} + \mathbf{1} \wedge T \wedge \mathbf{1} + \mathbf{1} \wedge \mathbf{1} \wedge T + T \wedge T \wedge T \right)$$

acting on 56 fermions χ^{ijk} in $8 \wedge 8 \wedge 8$ of SU(8), with $T = \varepsilon \otimes \mathbf{1}_4$ (imaginary unit in SU(3) × U(1) breaking).

 \mathcal{I} is *not* in SU(8) $\equiv K(E_7)$... but it is in $K(E_{10})!$

The proof requires over-extended root of $E_{10} \Rightarrow$ no way to realise q-shift with finite-dimensional R symmetries! It would be rather striking if $K(E_{10})$ were needed to relate N = 8 supergravity to Standard Model fermions... Also: $K(E_{10}) \supset W(E_{10}) \supset W(E_7) \supset PSL_2(7)$ \rightarrow a new family symmetry? [cf.: Chen,Perez,Ramond,1412.6107]

Summary and Outlook

- All results obtained so far indicate that E_{10} requires a setting beyond known concepts of space and time.
- In this case space-time, and with it, concepts such as general covariance and local supersymmetry would have to be *emergent*.
- Fermionic sector: covariance in space-time replaced by covariance in generalized WDW moduli space.
- Need to resolve dichotomy between finitely many fermionic and infinitely many bosonic degrees of freedom \rightarrow may require some kind of bosonization?
- SUGRA Hamiltonian *vs.* quadratic Casimir of E_{10} : a definite mismatch between E_{10} and maximal supersymmetry?

Summary and Outlook

- Apparent incompatibility of $K(E_{10})$ and supersymmetry for imaginary (null and timelike) roots \rightarrow a new way to break, or rather *avoid*, supersymmetry with *even more* symmetry?
- \Rightarrow Can E_{10} supersede SUSY as a unifying principle?
- Despite the existence of (at least) 10²⁷²⁰⁰⁰ string vacua [most recent figures from: Taylor,Wang:1511.03209; Schellekens:1601.02462]
 N = 8 Supergravity remains the only theory that (after complete breaking of supersymmetry) gives
 - $48 \text{ spin-}\frac{1}{2} \text{ fermions, and nothing more.}$