Calabi-Yau manifolds and sporadic groups

Abhishek Chowdhury (ITP, TU Wien)

Based on:

Calabi-Yau manifolds and sporadic groups [arXiv:1711.09698]
A. Banlaki, A. Chowdhury, A. Kidambi, M. Schimpf, H. Skarke and T. Wrase

Int. Winter School on Partition Functions and Automorphic Forms BLTP, JNIR, Dubna

$$
31^{\text {st }} \text { Jan. } 2018
$$

TECHNISCHE
UNIVERSITÄT
WIEN
Vienna University of Technology

Outline

(1) Motivation

- Where does the moon shine?
- Why do we care about Moonshine?
(2) Preliminaries
- Finite groups
- Modular forms
- The Old Monster
(3) Calabi-Yau \& Sporadic groups
- Elliptic Genus
- Weak Jacobi forms
- Calabi-Yaus
(4) Conclusion

Overview of the talk

(1) Motivation

- Where does the moon shine?
- Why do we care about Moonshine?
(2) Preliminaries
- Finite groups
- Modular forms
- The Old Monster
(3) Calabi-Yau \& Sporadic groups
- Elliptic Genus
- Weak Jacobi forms
- Calabi-Yaus
(4) Conclusion

Where does the moon shine?

- The first thing that comes to mind is bootleg booze.

Where does the moon shine?

- The first thing that comes to mind is bootleg booze.
- A better answer would be John MaKay's observation in 70's

$$
196884=1+196883
$$

- Broadly, "Moonshine" refers to some connection between two apparently different mathematical objects which a priori has nothing to do with each other.

Why do we care about moonshine?

- Beautiful maths lurking in the shadows...

Why do we care about moonshine?

- Beautiful maths lurking in the shadows...
- Physics connection :
- Though the interplay between String theory and maths have been very fruitful to geometry, not many results are known on the number theory side. Moonshine seems to be a great opportunity to develop the number theoretic aspects of string theory.
- We get to construct systems with large sym. groups.
- Structure of BPS spectra etc.

Why do we care about moonshine?

- Beautiful maths lurking in the shadows...
- Physics connection :
- Though the interplay between String theory and maths have been very fruitful to geometry, not many results are known on the number theory side. Moonshine seems to be a great opportunity to develop the number theoretic aspects of string theory.
- We get to construct systems with large sym. groups.
- Structure of BPS spectra etc.
- Lot is going on now...
- There are more \& more examples. The meaning of "Moonshine" is everchanging.
- The "Origin" problem is becoming clearer.
- Of particular interest is symmetries of " K3-ish" string compactifications.

Overview of the talk

(1) Motivation

- Where does the moon shine?
- Why do we care about Moonshine?
(2) Preliminaries
- Finite groups
- Modular forms
- The Old Monster
(3) Calabi-Yau \& Sporadic groups
- Elliptic Genus
- Weak Jacobi forms
- Calabi-Yaus

4 Conclusion

Finite Simple groups

- Just like prime factorization of natural numbers we can think about finite groups in terms of "Building blocks".
- Notion of "Composite series" of normal subgroups builds finite groups out of a set of "primes"-finite simple groups.
- The full classification is probably one of the greatest work of mathematics in $20^{\text {th }}$ century. [Atlas, Robert Wilson.]
- There are 18 Infinite families, e.g.
- Alternating group of n elements A_{n}

$$
A_{3}:(123) \longleftrightarrow(231) \longleftrightarrow \text { (312) }
$$

- Cyclic group of prime order C_{p}

$$
C_{p}=\mathbb{Z}_{p}=\left\langle e^{\frac{2 \pi i}{p}}\right\rangle
$$

Preliminaries

Calabi-Yau \& Sporadic groups
Conclusion

Sporadic groups

There are 26 so called sporadic groups which don't fall into the infinite families.

Modular forms

For τ in the UHP \supset (Fnd. domain) and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{Z})$:

- Modular form of weight k :

$$
\phi_{k}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} \phi_{k}(\tau)
$$

- Jacobi form of weight k and index m with $\lambda, \mu \in \mathbb{Z}$:

$$
\begin{aligned}
\phi_{k, m}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) & =(c \tau+d)^{k} e^{\frac{2 \pi i m c z^{2}}{c \tau+d}} \phi_{k, m}(\tau, z) \\
\phi_{k, m}(\tau, z+\lambda \tau+\mu) & =(-1)^{2 m(\lambda+\mu)} e^{-2 \pi \mathrm{i} m\left(\lambda^{2} \tau+2 \lambda z\right)} \phi_{k, m}(\tau, z)
\end{aligned}
$$

- $\tau \rightarrow \tau+1$ and $z \rightarrow z+\mu$ allows for a Fourier expansion:

$$
\phi_{k, m}\left(q=e^{2 \pi i \tau}, y=e^{2 \pi i z}\right)=\sum_{n, r} c(n, r) q^{n} y^{r} \quad r^{2}>4 n m
$$

Eisenstein series

The Eisenstein series have the following Fourier decomposition

$$
\begin{aligned}
& E_{4}(\tau)=1+240 \sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{n}}=1+240 q+2160 q^{2}+\ldots \\
& E_{6}(\tau)=1-504 \sum_{n=1}^{\infty} \frac{n^{5} q^{n}}{1-q^{n}}=1-504 q-16632 q^{2}+\ldots
\end{aligned}
$$

Standard examples of holomorphic modular forms. Unfortunately, the space of holomorphic modular forms is too restrictive, it is just the ring of monomials $E_{4}^{\alpha} E_{6}^{\beta}$

Generalizations

- Multipliers: Allow for a phase $\psi: S L_{2}(\mathbb{Z}) \rightarrow C^{*}$ in transformation, e.g., Dedekind eta fn. $\eta(\tau)=e^{\frac{2 \pi i}{24}} \eta(\tau+1)$

Generalizations

- Multipliers: Allow for a phase $\psi: S L_{2}(\mathbb{Z}) \rightarrow C^{*}$ in transformation, e.g., Dedekind eta fn. $\eta(\tau)=e^{\frac{2 \pi i}{24}} \eta(\tau+1)$
- Poles: Allow the function to have exponetial growth near the cusps. (Weakly holomorphic). e.g. the $J(\tau)$ function (Hauptmodul), For a gives pole structure at cusp $i \infty$ and up to a constant it is a unique function which maps the fundamental domain (an S^{2}) to compactified $\mathbb{C}\left(\right.$ an $\left.S^{2}\right)$.

Generalizations

- Multipliers: Allow for a phase $\psi: S L_{2}(\mathbb{Z}) \rightarrow C^{*}$ in transformation, e.g., Dedekind eta fn. $\eta(\tau)=e^{\frac{2 \pi i}{24}} \eta(\tau+1)$
- Poles: Allow the function to have exponetial growth near the cusps. (Weakly holomorphic). e.g. the $J(\tau)$ function (Hauptmodul), For a gives pole structure at cusp $i \infty$ and up to a constant it is a unique function which maps the fundamental domain (an S^{2}) to compactified $\mathbb{C}\left(\right.$ an $\left.S^{2}\right)$.
- Subgroups: Consider a subgroup $\Gamma \subset S L_{2}(\mathbb{Z})$ of the modular group for which we impose the transformation property. e.g. Twined partition function $\operatorname{Tr}<g>$ for Monster.

Generalizations

- Multipliers: Allow for a phase $\psi: S L_{2}(\mathbb{Z}) \rightarrow C^{*}$ in transformation, e.g., Dedekind eta fn. $\eta(\tau)=e^{\frac{2 \pi i}{24}} \eta(\tau+1)$
- Poles: Allow the function to have exponetial growth near the cusps. (Weakly holomorphic). e.g. the $J(\tau)$ function (Hauptmodul), For a gives pole structure at cusp $i \infty$ and up to a constant it is a unique function which maps the fundamental domain (an S^{2}) to compactified $\mathbb{C}\left(\right.$ an $\left.S^{2}\right)$.
- Subgroups: Consider a subgroup $\Gamma \subset S L_{2}(\mathbb{Z})$ of the modular group for which we impose the transformation property. e.g. Twined partition function $\operatorname{Tr}<g>$ for Monster.
- Vector-valued: Consider maps from UHP to \mathbb{C}^{n} (vectors).Transform as vectors under modular transformations. e.g. Jacobi theta functions.

Generalizations

- Multipliers: Allow for a phase $\psi: S L_{2}(\mathbb{Z}) \rightarrow C^{*}$ in transformation, e.g., Dedekind eta fn. $\eta(\tau)=e^{\frac{2 \pi i}{24}} \eta(\tau+1)$
- Poles: Allow the function to have exponetial growth near the cusps. (Weakly holomorphic). e.g. the $J(\tau)$ function (Hauptmodul), For a gives pole structure at cusp $i \infty$ and up to a constant it is a unique function which maps the fundamental domain (an S^{2}) to compactified $\mathbb{C}\left(\right.$ an $\left.S^{2}\right)$.
- Subgroups: Consider a subgroup $\Gamma \subset S L_{2}(\mathbb{Z})$ of the modular group for which we impose the transformation property. e.g. Twined partition function $\operatorname{Tr}<g>$ for Monster.
- Vector-valued: Consider maps from UHP to \mathbb{C}^{n} (vectors). Transform as vectors under modular transformations. e.g. Jacobi theta functions.
- Now, we have a zoo of interesting species.

Jacobi Theta functions

The Jacobi theta functions $\theta_{i}(\tau, z), i=1, \cdots, 4$ are defined as

$$
\begin{aligned}
\theta_{1}(\tau, z) & =-\mathrm{i} \sum_{n+\frac{1}{2} \in \mathbb{Z}}(-1)^{n-\frac{1}{2}} y^{n} q^{\frac{n^{2}}{2}} \\
& =-\mathrm{i} q^{\frac{1}{8}}\left(y^{\frac{1}{2}}-y^{-\frac{1}{2}}\right) \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-y q^{n}\right)\left(1-y^{-1} q^{n}\right) \\
\theta_{2}(\tau, z) & =\sum_{n+\frac{1}{2} \in \mathbb{Z}} y^{n} q^{\frac{n^{2}}{2}} \\
& =q^{\frac{1}{8}}\left(y^{\frac{1}{2}}+y^{-\frac{1}{2}}\right) \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1+y q^{n}\right)\left(1+y^{-1} q^{n}\right)
\end{aligned}
$$

Jacobi Theta functions

$$
\begin{aligned}
\theta_{3}(\tau, z) & =\sum_{n \in \mathbb{Z}} y^{n} q^{\frac{n^{2}}{2}} \\
& =\prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1+y q^{n-\frac{1}{2}}\right)\left(1+y^{-1} q^{n-\frac{1}{2}}\right) \\
\theta_{4}(\tau, z) & =\sum_{n \in \mathbb{Z}}(-1)^{n} y^{n} q^{\frac{n^{2}}{2}} \\
& =\prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-y q^{n-\frac{1}{2}}\right)\left(1-y^{-1} q^{n-\frac{1}{2}}\right)
\end{aligned}
$$

Jacobi forms

$$
\begin{aligned}
\phi_{0,1}(\tau, z) & =4\left(\left(\frac{\theta_{2}(\tau, z)}{\theta_{2}(\tau, 0)}\right)^{2}+\left(\frac{\theta_{3}(\tau, z)}{\theta_{3}(\tau, 0)}\right)^{2}+\left(\frac{\theta_{4}(\tau, z)}{\theta_{4}(\tau, 0)}\right)^{2}\right) \\
& =\frac{1}{y}+10+y+\mathcal{O}(q) \\
\phi_{-2,1}(\tau, z) & =\frac{\theta_{1}(\tau, z)^{2}}{\eta(\tau)^{6}} \\
& =-\frac{1}{y}+2-y+\mathcal{O}(q) \\
\phi_{0, \frac{3}{2}}(\tau, z) & =2 \frac{\theta_{2}(\tau, z)}{\theta_{2}(\tau, 0)} \frac{\theta_{3}(\tau, z)}{\theta_{3}(\tau, 0)} \frac{\theta_{4}(\tau, z)}{\theta_{4}(\tau, 0)} \\
& =\frac{1}{\sqrt{y}}+\sqrt{y}+\mathcal{O}(q)
\end{aligned}
$$

Monster moonshine

- The irreducible representations of the Monster group have dimensions 1, 196 883, 21296 876,…
- The J-function, that appears in many places in string theory, enjoys the expansion

$$
J(q)=\frac{1}{q}+196884 q+21493760 q^{2}+\ldots .
$$

Monster moonshine

- The irreducible representations of the Monster group have dimensions 1, 196 883, 21296 876,‥
- The J-function, that appears in many places in string theory, enjoys the expansion

$$
J(q)=\frac{1}{q}+196884 q+21493760 q^{2}+\ldots .
$$

- Concrete realization : The (left-moving) bosonic string compactified on a \mathbb{Z}_{2} orbifold of R^{24} / Λ with Λ the Leech lattice (even, self-dual) has as its 1-loop partition function the $J(q)$-function. [Frenkel, Lepowsky, Meurman '88]

Monster moonshine

$$
Z(q)=\operatorname{Tr}_{\mathrm{H}} q^{L_{0}-\frac{c}{24}}=J(q)=\frac{1}{q}+\underbrace{196884 q+21493760 q^{2}+\ldots}_{\substack{\text { tachyon of the } \\ \text { bosonic string }}}
$$

- The symmetry group of the compactification space $R^{24} / \Lambda / \mathbb{Z}_{2}$ is the Monster group.
- Virasoro algebra: Expand the $J(q)$-function in terms of Virasoro characters (traces of Verma modules)

$$
c h_{h=0}(q)=\frac{q^{-c / 24}}{\prod_{n=2}^{\infty}\left(1-q^{n}\right)} ; \quad \operatorname{ch}_{h}(q)=\frac{q^{h-c / 24}}{\prod_{n=1}^{\infty}\left(1-q^{n}\right)}
$$

Monster moonshine

$$
\begin{aligned}
J(q) & =\frac{1}{q}+196884 q+21493760 q^{2}+\ldots \\
& =1 \mathrm{ch}_{0}(q)+196883 \mathrm{ch}_{2}(q)+21296876 \mathrm{ch}_{3}(q)+\ldots
\end{aligned}
$$

- Other realizations in terms of 23 Niemeier lattices. Construct from ADE root systems with glueing vectors. They are related to Umbral moonshine. Adds const. to $J(q)$.
- Interesting for mathematicians not so interesting for physicists
- Compactification of the bosonic string:
- We have a tachyon (instability).
- Spacetime theory has no fermions.
- Additionally, only two spacetime dimensions are non-compact.
- There exists various supersymmetric generalizations of mainly Extremal CFT constructions with different "Moonshine"

Overview of the talk

(1) Motivation

- Where does the moon shine?
- Why do we care about Moonshine?
(2) Preliminaries
- Finite groups
- Modular forms
- The Old Monster
(3) Calabi-Yau \& Sporadic groups
- Elliptic Genus
- Weak Jacobi forms
- Calabi-Yaus
(4) Conclusion

Elliptic genus

Elliptic genus: Defined for a SCFT with $N=(2,2)$ or more SUSY. An index is invariant under deformations of the theory, e.g. masses going to zero in Witten Index.

$N=2$ Characters

- For central charge $c=3 d$ and heighest weight state $|\Omega\rangle$ with eigenvalues $h, /$ w.r.t. L_{0} and J_{0}.

$$
\operatorname{ch}_{d, h-\frac{c}{24}, \ell}^{\mathcal{N}}=2(\tau, z)=\operatorname{tr}_{\mathcal{H}_{h, \ell}}\left((-1)^{F} q^{L_{0}-\frac{c}{24}} e^{2 \pi \mathrm{iz} J_{0}}\right)
$$

- In the Ramond sector unitarity requires $h \geq \frac{c}{24}=\frac{d}{8}$.
- Massless (BPS) representations exist for $h=\frac{d}{8} ; \ell=\frac{d}{2}, \frac{d}{2}-1, \frac{d}{2}-2, \ldots,-\left(\frac{d}{2}-1\right),-\frac{d}{2}$. For $\frac{d}{2}>\ell \geq 0$

- Massive (non-BPS) representations exist for $h>\frac{d}{8} ; \ell=\frac{d}{2}, \frac{d}{2}-1, \ldots,-\left(\frac{d}{2}-1\right),-\frac{d}{2}$ and $\ell \neq 0$ for $d=$ even.

Weak Jacobi forms

- The space of weak Jacobi forms of even weight k and integer index m is generated by [Zagier et. al. '85; Gritsenko '99]

$$
E_{4}(\tau), E_{6}(\tau), \phi_{-2,1}(\tau, z), \phi_{0,1}(\tau, z)
$$

- Simple combinatorics gives the space $J_{0, m}$ of Jacobi forms of weight 0 and index m, is generated by m functions for $m=1,2,3,4,5$. In particular, we have

$$
\begin{aligned}
J_{0,1} & =\left\langle\phi_{0,1}\right\rangle \\
J_{0,2} & =\left\langle\phi_{0,1}^{2}, E_{4} \phi_{-2,1}^{2}\right\rangle \\
J_{0,3} & =\left\langle\phi_{0,1}^{3}, E_{4} \phi_{-2,1}^{2} \phi_{0,1}, E_{6} \phi_{-2,1}^{3}\right\rangle \\
J_{0,4} & =\left\langle\phi_{0,1}^{4}, E_{4} \phi_{-2,1}^{2} \phi_{0,1}^{2}, E_{6} \phi_{-2,1}^{3} \phi_{0,1}, E_{4}^{2} \phi_{-2,1}^{4}\right\rangle \\
J_{0,5} & =\left\langle\phi_{0,1}^{5}, E_{4} \phi_{-2,1}^{2} \phi_{0,1}^{3}, E_{6} \phi_{-2,1}^{3} \phi_{0,1}^{2}, E_{4}^{2} \phi_{-2,1}^{4} \phi_{0,1}, E_{4} E_{6} \phi_{-2,1}^{5}\right\rangle
\end{aligned}
$$

Weak Jacobi forms

- The functions $J_{0, \frac{d}{2}}$ above appear in the elliptic genus of Calabi-Yau $d=2,4,6,8,10$ target manifolds.
- Coefficients can be fixed in terms of a few topological numbers of the CY d-fold.

Weak Jacobi forms

- The functions $J_{0, \frac{d}{2}}$ above appear in the elliptic genus of Calabi-Yau $d=2,4,6,8,10$ target manifolds.
- Coefficients can be fixed in terms of a few topological numbers of the CY d-fold.
- Weight zero, half integer index Jacobi forms, follows from

$$
J_{2 k, m+\frac{1}{2}}=\phi_{0, \frac{3}{2}} J_{2 k, m-1}, \quad m \in \mathbb{Z}
$$

- In particular, $\phi_{0, \frac{3}{2}}$ and $\phi_{0, \frac{3}{2}} \phi_{0,1}$ are, up to rescaling, the unique Jacobi forms of weight 0 and index $\frac{3}{2}$ and $\frac{5}{2}$, respectively.
- Generally, the space $J_{0, m+\frac{3}{2}}$ is spanned by m functions for $m=1,2,3,4,5$ and these functions are the ones given in previous slide multiplied by $\phi_{0, \frac{3}{2}}$.
- Summary : Space of Jacobi forms $J_{0, \frac{d}{2}}$ is generated by very few functions for small d. Carries little info, about the CY.

Calabi-Yaus

- $\mathcal{Z}_{C Y_{d}}(\tau, z)=\sum_{p=0}^{d}(-1)^{p} \chi_{p}\left(C Y_{d}\right) y^{\frac{d}{2}-p}+\mathcal{O}(q)$
- Various signed indices $\chi_{p}\left(C Y_{d}\right)=\sum_{r=0}^{d}(-1)^{r} h^{p, r}$.
- Euler no. : $\mathcal{Z}_{C Y_{d}}(\tau, 0)=\chi_{C Y_{d}}=\sum_{p=0}^{d}(-1)^{p} \chi_{p}\left(C Y_{d}\right)$.

Calabi-Yaus

- $\mathcal{Z}_{C Y_{d}}(\tau, z)=\sum_{p=0}^{d}(-1)^{p} \chi_{p}\left(C Y_{d}\right) y^{\frac{d}{2}-p}+\mathcal{O}(q)$
- Various signed indices $\chi_{p}\left(C Y_{d}\right)=\sum_{r=0}^{d}(-1)^{r} h^{p, r}$.
- Euler no. : $\mathcal{Z}_{C Y_{d}}(\tau, 0)=\chi_{C Y_{d}}=\sum_{p=0}^{d}(-1)^{p} \chi_{p}\left(C Y_{d}\right)$.
- The Elliptic genus carries little info. about the particular CY.
- For larger d many different Calabi-Yau d-folds will give rise to the same elliptic genus since the number of Calabi-Yau manifolds grows much faster with d than the number of basis elements of $J_{0, \frac{d}{2}}$.

Calabi-Yaus

- $\mathcal{Z}_{C Y_{d}}(\tau, z)=\sum_{p=0}^{d}(-1)^{p} \chi_{p}\left(C Y_{d}\right) y^{\frac{d}{2}-p}+\mathcal{O}(q)$
- Various signed indices $\chi_{p}\left(C Y_{d}\right)=\sum_{r=0}^{d}(-1)^{r} h^{p, r}$.
- Euler no. : $\mathcal{Z}_{C Y_{d}}(\tau, 0)=\chi_{C Y_{d}}=\sum_{p=0}^{d}(-1)^{p} \chi_{p}\left(C Y_{d}\right)$.
- The Elliptic genus carries little info. about the particular CY.
- For larger d many different Calabi-Yau d-folds will give rise to the same elliptic genus since the number of Calabi-Yau manifolds grows much faster with d than the number of basis elements of $J_{0, \frac{d}{2}}$.
- Question: If one finds interesting expansion coefficients in higher dimensional manifolds, i.e the expansion coefficients are given in terms of irreducible representations of a particular sporadic group, does this imply that all manifolds with such elliptic genus are connected to the particular sporadic group, or only a few or none?

Calabi-Yaus

- Calabi-Yau 1-fold: For the standard torus T^{2} the elliptic genus vanishes, $\mathcal{Z}_{T^{2}}(\tau, z)=0$. The same holds true for any even dimensional torus $\mathcal{Z}_{T^{2 n}}(\tau, z)=0, \forall n \in \mathbb{N}$. This is due to the fermionic zero modes in the right moving Ramond sector.

Calabi-Yaus

- Calabi-Yau 1-fold: For the standard torus T^{2} the elliptic genus vanishes, $\mathcal{Z}_{T^{2}}(\tau, z)=0$. The same holds true for any even dimensional torus $\mathcal{Z}_{T^{2 n}}(\tau, z)=0, \forall n \in \mathbb{N}$. This is due to the fermionic zero modes in the right moving Ramond sector.
- Calabi-Yau 2-fold : Non-trivial example is K3 surface. Elliptic genus is a Jacobi form that appears in Mathieu Moonshine.
[Tachikawa et.al. '10 ; Gaberdiel et.al. '10, Mukai '88]
$\mathcal{Z}_{K 3}(\tau, z)=2 \phi_{0,1}(\tau, z)=-20 \operatorname{ch}_{2,0,0}^{\mathcal{N}=2}(\tau, z)+2 \operatorname{ch}_{2,0,1}^{\mathcal{N}}=2(\tau, z)-\sum_{n=1}^{\infty} A_{n} \operatorname{ch}_{2, n, 1}^{\mathcal{N}=2}(\tau, z)$ The coefficients are irreps of M_{24}.

$$
\begin{aligned}
20 & =23-3 \cdot 1 \\
-2 & =-2 \cdot 1 \\
A_{1} & =45+\underline{45} \\
A_{2} & =231+\underline{231} \\
A_{3} & =770+\underline{770}
\end{aligned}
$$

Calabi-Yaus

- Calabi-Yau 3-fold: Unfortunately, rather uninteresting expansion in $N=2$ characters
$\mathcal{Z}_{C Y_{3}}(\tau, z)=\frac{\chi_{C Y_{3}}}{2} \phi_{0, \frac{3}{2}}=\frac{\chi C Y_{3}}{2}\left(\operatorname{ch}_{3,0, \frac{1}{2}}^{\mathcal{N}=2}(\tau, z)+\operatorname{ch}_{3,0,-\frac{1}{2}}^{\mathcal{N}=2}(\tau, z)\right)$
Doesn't mean no connection to moonshine, e.g. By Heterotic Type II duality connection between Vafa's New SUSY index (One loop correction to prepotential in Het. side) connects to Gromov-Witten inv. on Type II side. [Wrase '14 ; Aradhita's talk]

Calabi-Yaus

- Calabi-Yau 3-fold: Unfortunately, rather uninteresting expansion in $N=2$ characters
$\mathcal{Z}_{C Y_{3}}(\tau, z)=\frac{\chi C Y_{3}}{2} \phi_{0, \frac{3}{2}}=\frac{\chi C Y_{3}}{2}\left(\operatorname{ch}_{3,0, \frac{1}{2}}^{\mathcal{N}=2}(\tau, z)+\operatorname{ch}_{3,0,-\frac{1}{2}}^{\mathcal{N}=2}(\tau, z)\right)$
Doesn't mean no connection to moonshine, e.g. By Heterotic Type II duality connection between Vafa's New SUSY index (One loop correction to prepotential in Het. side) connects to Gromov-Witten inv. on Type II side. [Wrase '14 ; Aradhita's talk]
- Calabi-Yau 4-folds : Coefficients of $J_{0,2}$ is fixed by Euler no. $\chi C Y_{4}$ and $\chi_{0}=\sum_{r}(-1)^{r} h^{0, r}=h^{0,0}+h^{0,4}=2$ (for gen. $C Y_{4}$)

$$
\mathcal{Z}_{C Y_{4}}(\tau, z)=\frac{\chi_{C Y_{4}}}{144}\left(\phi_{0,1}^{2}-E_{4} \phi_{-2,1}^{2}\right)+\chi_{0} E_{4} \phi_{-2,1}^{2}
$$

Obvious e.g. is $\mathcal{Z}_{K 3 \times K 3}(\tau, z)=4 \phi_{0,1}^{2}$ (not a gen. $C Y_{4}$), exhibits an $\mathrm{M}_{24} \times \mathrm{M}_{24}$ symmetry. Many, other connections. [work in progress, Cheng et.al.]

Calabi-Yau 5-folds

- Elliptic genus is proportional to $\phi_{0, \frac{3}{2}} \phi_{0,1}$ and we can fix the prefactor in terms of the Euler number $\chi \mathrm{CY}_{5}$.

$$
\begin{aligned}
\mathcal{Z}_{C Y_{5}}(\tau, z)= & \frac{\chi C Y_{5}}{24} \phi_{0, \frac{3}{2}}
\end{aligned} \phi_{0,1}, \begin{array}{rl}
48 & 22\left(\operatorname{ch}_{5,0, \frac{1}{2}}^{\mathcal{N}=2}(\tau, z)+\operatorname{ch}_{5,0,-\frac{1}{2}}^{\mathcal{N}=2}(\tau, z)\right) \\
& -2\left(\operatorname{ch}_{5,0, \frac{3}{2}}^{\mathcal{N}=2}(\tau, z)+\operatorname{ch}_{5,0,-\frac{3}{2}}^{\mathcal{N}=2}(\tau, z)\right) \\
& \left.+\sum_{n=1}^{\infty} A_{n}\left(\operatorname{ch}_{5, n, \frac{3}{2}}^{\mathcal{N}=2}(\tau, z)+\operatorname{ch}_{5, n,-\frac{3}{2}}^{\mathcal{N}=2}(\tau, z)\right)\right]
\end{array}
$$

- In particular, for CY 5-folds with $\chi_{C Y_{5}}=-48$ we find essentially the same expansion coefficients as in Mathieu moonshine, while for $\chi_{C Y_{5}}=-24$ we find essentially the same coefficients as for Enriques moonshine.

Twined Elliptic Genus

- Since, the elliptic genus is effectively the same for a huge class of 5 -folds, it stands to reason that we should check the Twinings by elements of M_{24}.
- We didn't expect to weed out the huge class of potential CY's we scanned.

Twined Elliptic Genus

- Since, the elliptic genus is effectively the same for a huge class of 5 -folds, it stands to reason that we should check the Twinings by elements of M_{24}.
- We didn't expect to weed out the huge class of potential CY's we scanned.
- Toric code: The Calabi-Yau manifolds we are interested in are hypersurfaces in weighted projective ambient spaces. A particular Calabi-Yau d-fold that is a hypersurface in the weighted projective space $\mathbb{C P}_{w_{1} \ldots w_{d+2}}^{d+1}$ is determined by a solution of $p\left(\Phi_{1}, \ldots, \Phi_{d+2}\right)=0$, where the Φ_{i} denote the homogeneous coordinates of the weighted projective space and p is a transverse polynomial of degree $m=\sum_{i} w_{i}$.

Twined Elliptic Genus

- Mapping [Benini et.al.] : Two-dim. gauged linear sigma model with $N=(2,2)$ SUSY.
- $U(1)$ gauge field under which the chiral multiplets Φ_{i} have charge w_{i}. Additionally, one extra chiral multiplet X with $U(1)$ charge $-m$.
- Invariant superpotential $W=X p\left(\Phi_{1}, \ldots, \Phi_{d+2}\right)$
- The F-term equation $\partial W / \partial X=p=0$ restricts us to the Calabi-Yau hypersurface above.
- R-charge : Zero for Φ_{i} and 2 for X.

Twined Elliptic Genus

- Mapping [Benini et.al.] : Two-dim. gauged linear sigma model with $N=(2,2)$ SUSY.
- $U(1)$ gauge field under which the chiral multiplets Φ_{i} have charge w_{i}. Additionally, one extra chiral multiplet X with $U(1)$ charge $-m$.
- Invariant superpotential $W=X p\left(\Phi_{1}, \ldots, \Phi_{d+2}\right)$
- The F-term equation $\partial W / \partial X=p=0$ restricts us to the Calabi-Yau hypersurface above.
- R-charge : Zero for Φ_{i} and 2 for X.
- Refined Elliptic genus: Extra chemical potential $x=e^{2 \pi i u}$

$$
\mathcal{Z}_{\mathrm{ref}}(\tau, z, u)=\operatorname{Tr}_{R R}\left((-1)^{F_{L}} y^{J_{0}} q^{L_{0}-\frac{d}{8}} x^{Q}(-1)^{F_{R}} \bar{q}^{\bar{L}_{0}-\frac{d}{8}}\right)
$$

Twined Elliptic Genus

- Contribution to Refined elliptic genus:
- Each chiral multiplet of $U(1)$ charge Q and \mathcal{R}-charge R

$$
\mathcal{Z}_{\text {ref }}^{\Phi}(\tau, z, u)=\frac{\theta_{1}\left(\tau,\left(\frac{R}{2}-1\right) z+Q u\right)}{\theta_{1}\left(\tau, \frac{R}{2} z+Q u\right)}
$$

- Abelian vector field

$$
\mathcal{Z}_{\mathrm{ref}}^{\mathrm{vec}}(\tau, z)=\frac{\mathrm{i} \eta(\tau)^{3}}{\theta_{1}(\tau,-z)}
$$

- Combined :

$$
\mathcal{Z}_{\mathrm{ref}}(\tau, z, u)=\frac{\mathrm{i} \eta(\tau)^{3}}{\theta_{1}(\tau,-z)} \frac{\theta_{1}(\tau,-m u)}{\theta_{1}(\tau, z-m u)} \prod_{i=1}^{d+2} \frac{\theta_{1}\left(\tau,-z+w_{i} u\right)}{\theta_{1}\left(\tau, w_{i} u\right)}
$$

- Standard elliptic genus is obtained by integrating over u. The integral localizes to sum over contour integrals around poles of u in the integrand.

Twined Elliptic Genus

$$
\begin{aligned}
\mathcal{Z}_{C Y_{d}}(\tau, z) & =\sum_{k, \ell=0}^{m-1} \frac{e^{-2 \pi i \ell z}}{m} \prod_{i=1}^{d+2} \frac{\theta_{1}\left(\tau, \frac{w_{i}}{m}(k+\ell \tau+z)-z\right)}{\theta_{1}\left(\tau, \frac{w_{i}}{m}(k+\ell \tau+z)\right)} \\
& =\sum_{k, \ell=0}^{m-1} \frac{y^{-\ell}}{m} \prod_{i=1}^{d+2} \frac{\theta_{1}\left(q, e^{\frac{2 \pi \mathrm{i} w_{i} k}{m}} q^{\frac{w_{i} \ell}{m}} y^{\frac{w_{i}}{m}-1}\right)}{\theta_{1}\left(q, e^{\frac{2 \pi \mathrm{i} w_{i} k}{m}} q^{\frac{w_{i} \ell}{m}} y^{\frac{w_{i}}{m}}\right)}
\end{aligned}
$$

Twined Elliptic Genus

$$
\begin{aligned}
\mathcal{Z}_{C Y_{d}}(\tau, z) & =\sum_{k, \ell=0}^{m-1} \frac{e^{-2 \pi i \ell z}}{m} \prod_{i=1}^{d+2} \frac{\theta_{1}\left(\tau, \frac{w_{i}}{m}(k+\ell \tau+z)-z\right)}{\theta_{1}\left(\tau, \frac{w_{i}}{m}(k+\ell \tau+z)\right)} \\
& =\sum_{k, \ell=0}^{m-1} \frac{y^{-\ell}}{m} \prod_{i=1}^{d+2} \frac{\theta_{1}\left(q, e^{\frac{2 \pi \mathrm{i} w_{i} k}{m}} q^{\frac{w_{i} \ell}{m}} y^{\frac{w_{i}}{m}-1}\right)}{\theta_{1}\left(q, e^{\frac{2 \pi \mathrm{i} w_{i} k}{m}} q^{\frac{w_{i} \ell}{m}} y^{\frac{w_{i}}{m}}\right)}
\end{aligned}
$$

Twine the elliptic genus by an Abelian symmetry g :

$$
g: \Phi_{i} \rightarrow e^{2 \pi i \alpha_{i}} \Phi_{i}, \quad i=1,2, \ldots, d+2
$$

It effectively, leads to a shift of the original z coordinate (i.e. the second argument) of the θ_{1}-functions for each Φ_{i} by α_{i}.

Twining for $C Y_{5}$

- A list of 5757727 CY 5-folds that can be described by reflexive polytopes is given on the TU website.
- Out of these 5757727 CY 5-folds only 19353 are described by transverse polynomials in weighted projective spaces.

Twining for CY_{5}

- A list of 5757727 CY 5-folds that can be described by reflexive polytopes is given on the TU website.
- Out of these 5757727 CY 5-folds only 19353 are described by transverse polynomials in weighted projective spaces.
- For generic $\chi_{C Y_{5}}$ (the constant sitting in front of $\mathcal{Z}_{C Y_{5}}(\tau, z)$) we can perform the twining. e.g. For the hypersurface in the weighted projective space $\mathbb{C P}_{1,1,1,3,5,9,10}^{6}$ with $\chi=-170688$ and

$$
\mathcal{Z}_{C Y_{5}}(\tau, z)=3556 \cdot\left[22\left(\operatorname{ch}_{5,0, \frac{1}{2}}^{\mathcal{N}=2}(\tau, z)+\operatorname{ch}_{5,0,-\frac{1}{2}}^{\mathcal{N}=2}(\tau, z)\right) \cdots\right]
$$

- For the \mathbb{Z}_{2} symmetry

$$
\mathbb{Z}_{2}:\left\{\begin{array}{l}
\Phi_{1} \rightarrow-\Phi_{1} \\
\Phi_{2} \rightarrow-\Phi_{2}
\end{array}\right.
$$

Twining for $C Y_{5}$

- Corresponding twined elliptic genus

$$
\begin{aligned}
\mathcal{Z}_{C Y_{5}}^{t w, 2 \mathrm{~A}}(\tau, z)=14 \cdot[& 2\left(\operatorname{ch}_{5,0, \frac{1}{2}}^{\mathcal{N}=2}(\tau, z)+\operatorname{ch}_{5,0,-\frac{1}{2}}^{\mathcal{N}=2}(\tau, z)\right) \\
& -2\left(\operatorname{ch}_{5,0, \frac{3}{2}}^{\mathcal{N}=2}(\tau, z)+\operatorname{ch}_{5,0,-\frac{3}{2}}^{\mathcal{N}=2}(\tau, z)\right) \\
& \left.+6\left(\operatorname{ch}_{5,1, \frac{3}{2}}^{\mathcal{N}=2}(\tau, z)+\operatorname{ch}_{5,1,-\frac{3}{2}}^{\mathcal{N}=2}(\tau, z)\right)+\ldots\right]
\end{aligned}
$$

which is a twined constant, 14 instead of 3556 , multiplied by the 2 A series of M_{24}.

- Generically, in most cases the \mathbb{Z}_{2} twining produced a linear combination of $1 A$ and $2 A$ conjugacy classes of M_{24} hence killing the scope of M_{24} symmetry. Cases, which reproduced say $2 A$ were lifted by higher order twinings.

Overview of the talk

(1) Motivation

- Where does the moon shine?
- Why do we care about Moonshine?
(2) Preliminaries
- Finite groups
- Modular forms
- The Old Monster
(5) Calabi-Ýau \& Sporadic groups
- Elliptic Genus
- Weak Jacobi forms
- Calabi-Yaus
(4) Conclusion

Final comments

- It is not absolutely settled as to whether the Mathieu moonshine in $K 3$ is a property of the manifold or not? Same questions can be asked for higher dim Calabi-Yau and it seems to be property of the Jacobi form rather than the manifold.

Final comments

- It is not absolutely settled as to whether the Mathieu moonshine in K3 is a property of the manifold or not? Same questions can be asked for higher dim Calabi-Yau and it seems to be property of the Jacobi form rather than the manifold.
- We also study CY 5-folds with Euler number different from ± 48, whose elliptic genus expansion agrees with the K3 elliptic genus expansion only up to a prefactor, is that the product spaces $\mathrm{K} 3 \times \mathrm{CY}_{3}$ have an elliptic genus that likewise agrees with the K3 elliptic genus expansion only up to a prefactor.

Final comments

- It is not absolutely settled as to whether the Mathieu moonshine in K3 is a property of the manifold or not? Same questions can be asked for higher dim Calabi-Yau and it seems to be property of the Jacobi form rather than the manifold.
- We also study CY 5-folds with Euler number different from ± 48, whose elliptic genus expansion agrees with the K3 elliptic genus expansion only up to a prefactor, is that the product spaces $\mathrm{K} 3 \times \mathrm{CY}_{3}$ have an elliptic genus that likewise agrees with the K3 elliptic genus expansion only up to a prefactor.
- The conclusions we drew rules out single copy of Mathieu moonshine but in some cases the reasoning allows for multiple copies but I agree it is preposterous.

Final comments

- It is not absolutely settled as to whether the Mathieu moonshine in K3 is a property of the manifold or not? Same questions can be asked for higher dim Calabi-Yau and it seems to be property of the Jacobi form rather than the manifold.
- We also study CY 5-folds with Euler number different from ± 48, whose elliptic genus expansion agrees with the K3 elliptic genus expansion only up to a prefactor, is that the product spaces $\mathrm{K} 3 \times \mathrm{CY}_{3}$ have an elliptic genus that likewise agrees with the K3 elliptic genus expansion only up to a prefactor.
- The conclusions we drew rules out single copy of Mathieu moonshine but in some cases the reasoning allows for multiple copies but I agree it is preposterous.
- If the goal is to connect the weight zero Jacobi forms to interesting jacobi forms coming from Umbral moonshine, it seems product of CYs doesn't work.

THANK YOU

