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Introduction and Results



I We construct the Siegel modular forms associated with the
theta lift of twisted elliptic genera of K 3 orbifolded with g′

corresponding to the conjugacy classes of the Mathieu
group M24

I These forms satisfy the required properties for them to be
generating functions of 1/4 BPS dyons of type II string
theories

I Inverse of these Siegel modular forms admit a Fourier
expansion with integer coefficients and the correct sign as
predicted from black hole physics (as conjectured by Sen)

I The correct sign is observed for dyons for all the 7 CHL
compactifications and also some non-geometric orbifolds
of K 3



Elliptic genus



• Consider the Elliptic genus of K 3.

F (K 3; τ, z) =

TrRR

(
(−1)F K 3+F̄ K 3

e2πizF K 3
e2πiτ(L0−c/24)ē−2πi τ̄(L̄0−ĉ/24)

)
=

∑
m≥0,l

c(4m − l2)e2πimτe2πilz

The trace is taken over the Ramond sector.

The elliptic genus is holomorphic in τ, z.

Only the ground states of the right movers are counted.



Evaluating the index we obtain

F (K 3; τ, z) = 8
[
θ2(τ, z)2

θ2(τ,0)2 +
θ3(τ, z)2

θ3(τ,0)2 +
θ4(τ, z)2

θ4(τ,0)2

]

Few simple CFT models of K 3 comes as an orbifold on T 4:

T 4/ZN for N = 2,3,4,6

Z2 : (y1, y2, y3, y4)→ −(y1, y2, y3, y4)

The Hodge diamond of K 3 is given by

h(0,0) = h(2,2) = h(0,2) = h(2,0) = 1,
h(1,1) = 20



Twisted Elliptic genus



There exists ZN quotients of K 3 for which the Hodge diamond
of K 3/ZN becomes

h(0,0) = h(2,2) = h(0,2) = h(2,0) = 1,

h(1,1) = 2
(

24
N + 1

− 2
)

= 2k

N h(1,1) k
1 20 10
2 12 6
3 8 4
5 4 2
7 2 1

Let us refer to these ZN action by g′.



• Let g′ be action of this quotient,
the twisted elliptic genus of K 3 is defined as

F (r ,s)(τ, z)

=
1
N
TrK 3

RR;g′r

(
(−1)F K 3+F̄ K 3

g′se2πizF K 3
e2πiτ(L0−c/24)q̄−2πi τ̄(L̄0−c/24)

)
,

=
1∑

b=0

∑
m≥0∈Z/N,l∈2Z+b

c(r ,s)
b (4m − l2)e2πimτe2πilz

0 ≤ r , s,≤ (N − 1).

These twisted elliptic genera for the ZN quotients of K 3 by g′

with N = 2,3,5,7 have been written down in
David, Jatkar, Sen (2006)



For the N = 2 orbifold the twisted indices are

F (0,0)(τ, z) = 4
[
θ2(τ, z)2

θ2(τ,0)2 +
θ3(τ, z)2

θ3(τ,0)2 +
θ4(τ, z)2

θ4(τ,0)2

]
,

F (0,1)(τ, z) = 4
θ2(τ, z)2

θ2(τ,0)2 , F (1,0)(τ, z) = 4
θ4(τ, z)2

θ4(τ,0)2 ,

F (1,1)(τ, z) = 4
θ3(τ, z)2

θ3(τ,0)2 .



Relation with Mathieu Moonshine



One can write the elliptic genus in terms of the characters of
the short and the long representations of the N = 4 super
conformal algebra

ZK 3(τ, z) = 24chh= 1
4 ,l=0(τ, z) +

∞∑
n=0

A(1A)
n chh=n+ 1

4 ,l=
1
2
(τ, z).

chh= 1
4 ,l=0(τ, z) = −i

eπizθ1(τ, z)

η(τ)3

∞∑
n=−∞

eπiτn(n+1)e2πi(n+ 1
2 )

1− e2πi(nτ+z)
,

chh=n+ 1
4 ,l=

1
2
(τ, z) = e2πiτ(n− 1

8 ) θ1(τ, z)2

η(τ)2 .



The first few values of A(1A)
n are given by

A(1A)
n = −2, 90, 462, 1540, 4554, 11592, . . .

These coefficients are sums of dimensions of the irreps of the
group M24.
Eguchi, Ooguri, Tachikawa (2010)

A(1A)
n = Tr(1)n, n > 0



Similarly the twining character F (0,1) for 2A orbifold admits the
decomposition

2F (0,1)(τ, z) = 8chh= 1
4 ,l=0(τ, z) +

∞∑
n=0

A(2A)
n chh=n+ 1

4 ,l=
1
2
(τ, z).



The first few values of A(2A)
n are given by

A(2A)
n = −2, −6, 14, −28, 42, −56, 86, −138, . . .

These coefficients can be read off from McKay-Thompson
series constructed out of trace of the elements g′2A in the 2A
conjugacy class of the Mathieu group M24.

A(2A)
n = Tr(g′2A)n

Cheng (2010), Gaberdiel, Hohenegger, Volpato (2010)



A few facts

I The group M24 ⊂ S24 is of order 244823040 ∼ 2× 108

I If one of the elements in M24 remain fixed one gets the
subgroup M23

I M24 admits 26 conjugacy classes of which 16 belong to
M23



Conjucay Class Order Cycle shape Cycle

1A 1 124 ()
2A 2 18 · 28 (1, 8)(2, 12)(4, 15)(5, 7)(9, 22)(11, 18)(14, 19)(23, 24)
3A 3 16 · 36 (3, 18, 20)(4, 22, 24)(5, 19, 17)(6, 11, 8)(7, 15, 10)(9, 12, 14)
5A 4 14 · 54 (2, 21, 13, 16, 23)(3, 5, 15, 22, 14)(4, 12, 20, 17, 7)(9, 18, 19, 10, 24)
7A 7 13 · 73 (1, 17, 5, 21, 24, 10, 6)(2, 12, 13, 9, 4, 23, 20)(3, 8, 22, 7, 18, 14, 19)
7A 7 13 · 73 (1, 21, 6, 5, 10, 17, 24)(2, 9, 20, 13, 23, 12, 4)(3, 7, 19, 22, 14, 8, 18)

11A 11 12 · 112 (1, 3, 10, 4, 14, 15, 5, 24, 13, 17, 18)(2, 21, 23, 9, 20, 19, 6, 12, 16, 11, 22)
23A 23 11 · 231 (1, 7, 6, 24, 14, 4, 16, 12, 20, 9, 11, 5, 15, 10, 19, 18, 23, 17, 3, 2, 8, 22, 21)
23B 23 11 · 231 (1, 4, 11, 18, 8, 6, 12, 15, 17, 21, 14, 9, 19, 2, 7, 16, 5, 23, 22, 24, 20, 10, 3)

4B 4 14 · 22 · 44 (1, 17, 21, 9)(2, 13, 24, 15)(3, 23)(4, 14, 5, 8)(6, 16)(12, 18, 20, 22)
6A 6 12 · 22 · 32 · 62 (1, 8)(2, 24, 11, 12, 23, 18)(3, 20, 10)(4, 15)(5, 19, 9, 7, 14, 22)(6, 16, 13)
8A 8 12 · 21 · 41 · 82 (1, 13, 17, 24, 21, 15, 9, 2)(3, 16, 23, 6)(4, 22, 14, 12, 5, 18, 8, 20)(7, 11)

14A 14 11 · 21 · 71 · 141 (1, 12, 17, 13, 5, 9, 21, 4, 24, 23, 10, 20, 6, 2)(3, 18, 8, 14, 22, 19, 7)(11, 15)
14B 14 11 · 21 · 71 · 141 (1, 13, 21, 23, 6, 12, 5, 4, 10, 2, 17, 9, 24, 20)(3, 14, 7, 8, 19, 18, 22)(11, 15)
15A 15 11 · 31 · 51 · 151 (2, 13, 23, 21, 16)(3, 7, 9, 5, 4, 18, 15, 12, 19, 22, 20, 10, 14, 17, 24)(6, 8, 11)
15B 15 11 · 31 · 51 · 151 (2, 23, 16, 13, 21)(3, 12, 24, 15, 17, 18, 14, 4, 10, 5, 20, 9, 22, 7, 19)(6, 8, 11)

Table: Conjugacy classes of M23 ⊂ M24 (Type 1)



Conjucay Class Order Cycle shape Cycle

2B 4 212 (1, 8)(2, 10)(3, 20)(4, 22)(5, 17)(6, 11)(7, 15)(9, 13)
(12, 14)(16, 18)(19, 23)(21, 24)

3B 9 38 (1, 10, 3)(2, 24, 18)(4, 13, 22)(5, 19, 15)(6, 7, 23)(8, 21, 12)
(9, 16, 17)(11, 20, 14)

12B 144 122 (1, 12, 24, 23, 10, 8, 18, 6, 3, 21, 2, 7)
(4, 9, 11, 15, 13, 16, 20, 5, 22, 17, 14, 19)

6B 36 64 (1, 24, 10, 18, 3, 2)(4, 11, 13, 20, 22, 14)(5, 17, 19, 9, 15, 16)
(6, 21, 7, 12, 23, 8)

4C 16 46 (1, 23, 18, 21)(2, 12, 10, 6)(3, 7, 24, 8)(4, 15, 20, 17)
(5, 14, 9, 13)(11, 16, 22, 19)

10A 20 22 · 102 (1, 8)(2, 18, 21, 19, 13, 10, 16, 24, 23, 9)
(3, 4, 5, 12, 15, 20, 22, 17, 14, 7)(6, 11)

21A 63 31 · 211 (1, 3, 9, 15, 5, 12, 2, 13, 20, 23, 17, 4, 14, 10, 21, 22, 19, 6, 7,
11, 16) (8, 18, 24)

21B 63 31 · 211 (1, 12, 17, 22, 16, 5, 23, 21, 11, 15, 20, 10, 7, 9, 13, 14, 6, 3, 2,
4, 19)(8, 24, 18)

4A 8 24 · 44 (1, 4, 8, 15)(2, 9, 12, 22)(3, 6)(5, 24, 7, 23)(10, 13)(11, 14, 18, 19)
(16, 20)(17, 21)

12A 24 21 · 41 · 61 · 121 (1, 15, 8, 4)(2, 19, 24, 9, 11, 7, 12, 14, 23, 22, 18, 5)
(3, 13, 20, 6, 10, 16)(17, 21)

Table: Conjugacy classes of M24 6∈ M23 (Type 2)



Using the McKay thompson series associated with each of
these 26 conjugacy classes one can write down the twining
character F (0,1) for each of the 26 classes.

Closed form expressions for these were given by
Cheng (2010), Eguchi (2010), Gaberdiel, Hohenegger, Volpato (2010)

Therefore M24 symmetry of the elliptic genus, points to the
existence of 26 quotients of K 3.



Transformation property of twisted elliptic genus

Modular transformations relate these elements by

F (r ,s)

(
aτ + b
cτ + d

,
z

cτ + d

)
= exp

(
2πi

cz2

cτ + d

)
F (cs+ar ,ds+br)(τ, z)

with
a,b, c,d ∈ Z, ad − bc = 1.

The indices cs + ar and ds + br belong to Z mod N.



Explicit closed form expressions for the all the components of
the twisted elliptic genus was obtained for [all the classes in
type 1 and the first two classes in type 2].
Chattopadhyaya, David (2017)

To determine the twisted elliptic genus in the sectors unrelated
to the F (0,1) we use the cycle shape of the conjugacy class in
M23 and for 2B and 3B we used a torus model (

∑
r ,s F (r ,s) = 0)

Using the twisted elliptic genus we can compute the Hodge
numbers and identify the classes 4B,6A,8A together with
2A,3A,5A,7A to that of CHL orbifolds.



Many of these are not geometric quotients.

For eg. the 11A conjugacy class, using the twisted elliptic
genus we can obtain what would have correspond to the hodge
number h(1,1).
It turns out this vanishes. Thus even the Kähler form of K 3 is
projected out.

The non-geometric ones are
11A,14A/B,15A/B,23A/B,2B,3B.

There is an explicit CFT construction in terms of 6 SU(2) WZW
theories at level 1 whose twisted elliptic genera is given by the
F (0,1) of the 2B orbifold.



Twisted elliptic genera and counting Black Hole
degeneracy



Consider type II B/A theory on K 3× T 2/ZN where the ZN
action is g′ on K 3 and a shift of 1/N on one of the circles of T 2.

These compactifications preserve N = 4 supersymmetry in
d = 4.

This gives a class of new N = 4 string vacua.

Each of these vacua admit 1/4 BPS states.
These are dyons with both electric and magnetic charges.

For large charges they can be identified with supersymmetric
black hole solutions.



The generating function for the degeneracy (index) of dyons in
these N = 4 theories is given by

− B6 = −(−1)Q·P
∫
C
dρdσdv e−πi(NρQ2+σ/NP2+2vQ·P) 1

Φ̃(ρ, σ, v)
,

where C is a contour in the complex 3-plane. Q,P refer to the
electric and magnetic charge of the dyons.
Dijkgraaf, Verlinde, Verlinde (1996), Jatkar Sen (2005), David, Jatkar,
Sen (2006), David, Sen (2006), Dabholkar Nampuri (2006)



The contour C is defined over a 3 dimensional subspace of the
3 complex dimensional space
(ρ = ρ1 + iρ2, σ = σ1 + iσ2, v = v1 + iv2).

ρ2 = M1, σ2 = M2, v2 = −M3,

0 ≤ ρ1 ≤ 1, 0 ≤ σ1 ≤ N, 0 ≤ v1 ≤ 1.
M1,M2 >> 0, M3 << 0, |M3| << M1,M2



Φ̃(ρ, σ, v) is the Siegel modular form associated with the twisted
elliptic genus is given by

Φ̃(ρ, σ, v) = e2πi(α̃ρ+β̃σ+v)

∏
b=0,1

N−1∏
r=0

∏
k ′∈Z+ r

N ,l∈Z,
j∈2Z+b

k ′,l≥0,j<0k ′=l=0

(1− e2πi(k ′σ+lρ+jv))
∑N−1

s=0 e2πisl/Ncr,s
b (4k ′l−j2).

where

β̃ =
1
N
, α̃ = 1

Here N is the order of the orbifold action.
This Siegel modular form transforms as a weight k form under
appropriate sub-groups of Sp(2,Z).



The modular property is defined as follows. Let

Ω =

(
ρ v
v σ

)
Then

Φ̃k ((CΩ + D)−1(AΩ + B)) = [det(CΩ + D)]k Φ̃k (Ω)

where(
A B
C D

)T ( 0 1
−1 0

)
4×4

(
A B
C D

)
=

(
0 1
−1 0

)
A,B,C,D are 2× 2 matrices with integer elements.



The weight k is related to the low lying coefficients of the
twisted elliptic genus and is given by

k =
1
2

N−1∑
0

c(0,s)(0).



−B6

In the context of N= 4 supersymmetric string theories in four
dimensions the 6th helicity trace index B6 which corresponds to
12 broken supersymmetries (1/4 BPS dyons) can be given by

B6 =
1
6!
Tr((−1)2h(2h)6)

where h is the third component of the angular momentum of a
state in the rest frame, and the trace is taken over all states
carrying a given set of charges.

From the above definition we require −B6 to be positive for
single centered black holes.

Also from the analysis of Kiritsis 97 we have −B6 ∼ eSBH ,
where SBH is the extremal black hole entropy.



Two tests for this degeneracy formula



Test 1

Comparison of the statistical entropy with the Wald entropy.

Using a saddle point analysis of the contour determining the
degeneracy we can find the degeneracy and entropy for large
charges

S(Q,P) = π
√

Q2P2 − (Q · P)2

+ ln(h(k+2)(τ)) + ln(h(k+2)(−τ̄))− (k + 2) ln(2τ2)

with
τ1 =

Q · P
P2 , τ2 =

1
P2

√
Q2P2 − (Q · P)2



The leading term in the asymptotic formula for the entropy is the
Hawking Bekenstein entropy of the corresponding black hole.

The subleading term gives the contribution of entropy from the
(Gauss Bonnet term) in the effective action using the Wald
formula.

We checked the degeneracies given by the Siegel modular
form constructed from the twisted elliptic genus matches the
entropy given by the Wald formula



The weights of the Siegel modular forms are given by

Type 1 pA 4B 6A 8A 14A 15A

Weight 24
p+1 − 2 3 2 1 0 0

Table: Weight of Siegel modular forms corresponding to classes in
M23

Type 2 2B 3B

Weight 0 -1

Table: Weight of Siegel modular forms corresponding to the classes
6∈ M23



The modular functions which determine the sub-leading
corrections are given by

Conjugacy Class h(k+2)(ρ)

pA ηk+2(ρ)ηk+2(pρ)

4B η4(4ρ)η2(2ρ)η4(ρ)

6A η2(ρ)η2(2ρ)η2(3ρ)η2(6ρ)

8A η2(ρ)η(2ρ)η(4ρ)η2(8ρ)

14A η(ρ)η(2ρ)η(7ρ)η(14ρ)

15A η(ρ)η(3ρ)η(5ρ)η(15ρ)

2B
η8(4ρ)
η4(2ρ)

3B
η3(9ρ)
η(3ρ)

Table: p ∈ {1,2,3,5,7,11,23}



Test 2

Secondly and perhaps a more stringent test:

The coefficients −B6(Q,P) certainly must be integers.
It was conjectured that:
from the fact that for single centered black holes,
due to spherical symmetry and the regularity of the horizon,
the only angular momentum it caries is from the fermionic zero
modes.

−B6(Q,P) for single centered black holes must be positive.
Sen (2010)



The sufficient condition which ensures this property is that for
charges which satisfy

Q · P ≥ 0, (Q · P)2 < Q2P2, Q2,P2 > 0.

the coefficient −B6(Q,P) evaluated from the Fourier expansion
of the Siegel modular form should be positive.

This gives a non-trivial condition on the Fourier expansion of
the inverse of Siegel modular forms which are generating
functions for the index −B6(Q,P)



For the case of 1A, (compactification of type II on K 3× T 2) for
a specific class of charges, this conjecture has been proved by
Bringmann, Murthy (2013)

For the orbifolds corresponding to classes pA, p = 2,3,5,7, it
has been verified by explicit computation of the Fourier
coefficients of −B6(Q,P) for low lying charges.
Sen (2010)



We constructed the twisted elliptic genus for orbifolds
corresponding to all the conjugacy classes in type 1 and the
first two classes in type 2

Using this we can explicitly evaluate the Fourier coefficients
which evaluate −B6 of the dyons for low lying charges.

Results for 11A, 4B, 2B are listed.



(Q2, P2) \Q · P -2 0 1 2 3

(1/2, 2) -512 176 8 0 0
(1/2, 4) -1536 896 80 0 0
(1/2, 6) -4544 3616 480 0 0
(1/2, 8) 11752 12848 2176 24 0
(1,4) -4592 5024 832 16 0
(1,6) -13408 22464 36786 224 0
(1,8) -33568 88320 26176 1760 0

(3/2, 6) -37330 112316 36786 2998 38
(3/2, 8) -80896 491920 196960 23616 592

Table: Some results for the index −B6 for the 4B orbifold of K 3 for
different values of Q2, P2 and Q · P



(Q2, P2) \Q · P -2 0 1 2 3

(2/11, 2) -50 10 0 0 0
(2/11, 4) -100 30 0 0 0
(2/11, 6) -200 82 1 0 0
(4/11, 6) -400 276 18 0 0
(6/11, 6) -800 806 83 0 0
(6/11, 8) -1438 2064 314 2 0
(6/11, 10) -2584 4962 937 16 0
(6/11, 12) -4328 11132 2558 72 0
(6/11, 22) -34000 366378 139955 12760 114

Table: Some results for the index −B6 for the 11A orbifold of K 3 for
different values of Q2, P2 and Q · P



(Q2, P2) \Q · P -2 0 1 2 3

(1/2, 2) 320 288 24 0 0
(1/2, 4) 0 512 256 0 0
(1/2, 6) -752 1120 888 48 0
(1/2, 8) 384 3328 2048 384 0
(1,4) 32 4416 2240 32 0
(1,6) -2304 22464 13248 224 0
(1,8) 5920 42944 27328 5920 64

(3/2, 6) -2008 102380 66172 9032 28
(3/2, 8) 59392 372736 243712 59392 2048

Table: Some results for the index B6 for the 2B orbifold of K 3 for
different values of Q2, P2 and Q · P



As a check of the mathematica program used to evaluate these
Fourier coefficients, we verified the coefficients listed by
Sen(2010) for the orbifolds pA,p = 2,3,5,7.

It is interesting to note that the non-geometric orbifolds
11A,23A,23B,2B,3B also satisfy the positivity constraints.



Remarks

The test for positivity of −B6 was also carried out for two
orbifolds of K 3 proposed by (Paquette, Volpato, Zimet 2017)
and some of the values turned out to be negative.



Other applications.



Compactifications of heterotic string on K 3× T 2/ZN
([g′] ∈ M24, O(g′) = N) generalize the compactification of
heterotic on K 3× T 2.

These examples provide a class of N = 2 string vaccua dual
to type II compactification on Calabi-Yau manifolds.

The spectrum and the one loop effective action in the gauge
sector of these compactifications were explored in
Datta, David, Lust (2015), Chattopadhyaya, David (2016)



Recently we have also evaluated the one loop effective action
in the gravitational sector.
Chattopadhyaya, David 2017 (1712.08791)

These couplings Fg appear as the following terms in the
effective action

S =

∫
Fg(y , ȳ)F 2g−2R2

These contain information of Gopakumar-Vafa invariants which
capture important toplogical data of the Calabi-Yau manifolds.

The gravitational amplitudes in these orbifold models leads to a
generalization (twisted versions) of these invariants.



The coupling Fg can be schematically given by,

Fg ∼
∫
F

d2τ

τ2
[Θ

(r ,s)
2k (τ, τ̄ , y , ȳ)f (r ,s)(τ)P2k+2(τ)]

where, f (r ,s)(τ) can be evaluated from the twisted elliptic genus
of K 3 and involves Γ0(N) modular functions.
P2k+2 is a weakly holomorphic modular form,
Θ

(r ,s)
2k (τ, τ̄ , y , ȳ) ∼ 2k derivatives acting on Siegel Narain theta

function.

One can get the GV invariants and the Euler characters of
these Calabi Yau manifolds from Fg , by extracting its
holomorphic piece.

The integral can be done by ”unfolding-technique” or
Borcherds-Harvey-Moore reduction.



Results χ

Orbifold Nh − Nv χ

1A -240 -480

2A 16 32

3A 138 276

4B 200 400

5A 260 520

6A 262 524

7A 321 642

8A 322 644

Table: List of Euler character for the dual Calabi-Yau manifolds for the
CHL cases



Observations

Gopakumar Vafa invariants for all twisted and untwisted sectors
for the 16 models are integers as expected.

At special points in the moduli space there exists singularities
(poles) called conifold singularities, and these special points
are present only at the twisted sectors of the g′ orbifolds.

Strength of these are determined by the genus zero
Gopakumar Vafa invariants at the corresponding points in the
moduli space.
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