Lorentzian Kac-Moody algebras with Weyl groups of 2-reflections

Viacheslav V. Nikulin

Steklov Mathematical Institute, Moscow and University of Liverpoool.

Abstract

The talk follows to the recent preprint with the same name by Valery Gritsenko and V. Nikulin, arXiv:1602.08359, February 2016, 75 pages.

One can find some details there.

Warsaw, June 2016

1 Lorentzian Kac-Moody algebras: general definition

Lorentzian Kac-Moody algebras which we consider are given by data (I) - (V) below. We follow the general theory of Lorentzian Kac-Moody algebras from our papers 1994 - 2003 where we used ideas and results by Kac-Moody and Borcherds
(I) The datum (I) is given by a hyperbolic lattice S of the rank rk $S \geq 3$.

We recall that a lattice (equivalently, a non-degenerate symmetric bilinear form over \mathbb{Z}) M means that M is a free \mathbb{Z}-module M of a finite rank with symmetric \mathbb{Z}-bilinear non-degenerate pairing $(x, y) \in \mathbb{Z}$ for $x, y \in M$. A lattice S is hyperbolic if the corresponding symmetric bilinear form $S \otimes \mathbb{R}$ over \mathbb{R} has signature $(n, 1)$ where rk $S=n+1$.
(II) This datum is given by a Weyl group which is a reflection subgroup $W \subset O(S)$ of the hyperbolic lattice S from (I). It is generated by reflections in roots of S.

We recall that an element α of a lattice M is called root if $\alpha^{2}=$ $(\alpha, \alpha)>0$ and $\alpha^{2} \mid 2(\alpha, M)$ that is $\alpha^{2} \mid 2(\alpha, x)$ for any $x \in M$. A root $\alpha \in M$ defines the reflection

$$
\begin{equation*}
s_{\alpha}: x \rightarrow x-\frac{2(x, \alpha)}{\alpha^{2}} \alpha, \quad \forall x \in M \tag{1.1}
\end{equation*}
$$

which belongs to $O(M)$. The reflection s_{α} is characterized by the properties: $s_{\alpha}(\alpha)=-\alpha$ and $s_{\alpha} \left\lvert\,(\alpha) \frac{\perp}{M}\right.$ is identity.
(III) This datum is given by the set of simple real roots $P=$ $P(\mathcal{M}) \subset S$ of roots which are perpendicular and directed outwards to the fundamental chamber $\mathcal{M} \subset \mathcal{L}(S)$ of the Weyl group W from the data (II) acting in the hyperbolic space $\mathcal{L}(S)$ defined by S. Each codimension one face of \mathcal{M} must have exactly one element $\alpha \in P(\mathcal{M})$ which is perpendicular to this face and directed outwards. The set $P=P(\mathcal{M})$ must have the lattice Weyl vector $\rho \in S \otimes \mathbb{Q}$ which means that

$$
\begin{equation*}
(\rho, \alpha)=-\frac{\alpha^{2}}{2} \quad \forall \alpha \in P=P(\mathcal{M}) . \tag{1.2}
\end{equation*}
$$

The fundamental chamber \mathcal{M} must have either a finite volume (then S is called elliptically reflective) and then $\rho^{2}<0$ and $P=$ $P(\mathcal{M})$ is finite (elliptic case), or almost finite volume (then S is called parabolically reflective) and $\rho^{2}=0$, but $\rho \neq 0$ (parabolic case). Here almost finite volume means that \mathcal{M} has finite volume in any cone with the vertex $\mathbb{R}_{++} \rho$ at infinity of \mathcal{M}.

We recall that, for a hyperbolic lattice S, we can consider the cone

$$
V(S)=\left\{x \in S \otimes \mathbb{R} \mid x^{2}<0\right\}
$$

of S, and its half cone $V^{+}(S)$. Any two elements $x, y \in V^{+}(S)$ satisfy $(x, y)<0$. The half-cone $V^{+}(S)$ defines the hyperbolic space of S,

$$
\mathcal{L}(S)=V^{+}(S) / \mathbb{R}_{++}=\left\{\mathbb{R}_{++} x \mid x \in V^{+}(S)\right\}
$$

of the curvature (-1) with the hyperbolic distance

$$
\operatorname{ch} \rho\left(\mathbb{R}_{++} x, \mathbb{R}_{++} y\right)=\frac{-(x, y)}{\sqrt{x^{2} y^{2}}}, \quad x, y \in V^{+}(S)
$$

Here \mathbb{R}_{++}is the set of all positive real numbers, and \mathbb{R}_{+}is the set of all non-negative real numbers. Any $\delta \in S \otimes \mathbb{R}$ with $\delta^{2}>0$ defines a half-space

$$
\mathcal{H}_{\delta}^{+}=\left\{\mathbb{R}_{++} x \in \mathcal{L}^{+}(S) \mid(x, \delta) \leq 0\right\}
$$

of $\mathcal{L}(S)$ bounded by the hyperplane

$$
\mathcal{H}_{\delta}=\left\{\mathbb{R}_{++} x \in \mathcal{L}^{+}(S) \mid(x, \delta)=0\right\}
$$

The δ is called orthogonal to the half-space \mathcal{H}_{δ}^{+}and the hyperplane \mathcal{H}_{δ}, and it is defined uniquely if $\delta^{2}>0$ is fixed. For a root $\alpha \in S$, the reflection s_{α} gives the reflection of $\mathcal{L}^{+}(S)$ with respect to the hyperplane \mathcal{H}_{α}, that is s_{α} is identity on \mathcal{H}_{α}, and $s_{\alpha}\left(\mathcal{H}_{\alpha}^{+}\right)=\mathcal{H}_{-\alpha}^{+}$. It is well-known that the group

$$
O^{+}(S)=\left\{\phi \in O(S) \mid \phi\left(V^{+}(S)\right)=V^{+}(S)\right\}
$$

is discrete in $\mathcal{L}^{+}(S)$ and has a fundamental domain of finite volume. The subgroup $W \subset O(S)$ is its subgroup generated by reflections in hyperplanes of $\mathcal{L}^{+}(S)$. It has the fundamental chamber

$$
\mathcal{M}=\left\{\mathbb{R}_{++} x \in \mathcal{L}^{+}(S) \mid(P(\mathcal{M}), x) \leq 0\right\}
$$

The main invariant of the data (I) - (III) is the generalized Cartan matrix

$$
\begin{equation*}
A=\left(\frac{2\left(\alpha, \alpha^{\prime}\right)}{(\alpha, \alpha)}\right)=\quad \alpha, \alpha^{\prime} \in P=P(\mathcal{M}) \tag{1.3}
\end{equation*}
$$

It defines the corresponding hyperbolic Kac-Mody algebra $\mathfrak{g}(A)$, by Kac and Moody. It is graded by the lattice S. The next data (IV) and (V) give the automorphic correction \mathfrak{g} of this algebra.

By my results and by Vinberg, we have finiteness (for elliptic case) and almost finiteness (for parabolic case) for data 1) -3).
(IV) For this datum, we need an extended lattice $T=U(m) \oplus S$ (the symmetry lattice of the Lie algebra \mathfrak{g}) where

$$
U=\left(\begin{array}{rr}
0 & -1 \tag{1.4}\\
-1 & 0
\end{array}\right)
$$

$M(m)$ for a lattice M and $m \in \mathbb{Q}$ means that we multiply the pairing of M by m, the orthogonal sum of lattices is denoted by \oplus. The lattice T defines the Hermitian symmetric domain of the type IV

$$
\begin{equation*}
\Omega(T)=\{\mathbb{C} \omega \subset T \otimes \mathbb{C} \mid(\omega, \omega)=0,(\omega, \bar{\omega})<0\}^{+} \tag{1.5}
\end{equation*}
$$

where + means a choice of one (from two) connected components. The domain $\Omega(T)$ can be identified with the complexified cone
$\Omega\left(V^{+}(S)\right)=S \otimes \mathbb{R}+i V^{+}(S)$ as follows: for the basis e_{1}, e_{2} of the lattice U with the matrix (1.4), we identify $z \in \Omega\left(V^{+}(S)\right)$ with $\mathbb{C} \omega_{z} \in \Omega(T)$ where $\omega_{z}=(z, z) e_{1} / 2+e_{2} / m \oplus z \in \Omega(T)^{\bullet}$ (the corresponding affine cone over $\Omega(T)$). The main datum in (IV) is a holomorphic automorphic form $\Phi(z), z \in \Omega\left(V^{+}(S)\right)=\Omega(T)$ of some weight $k \in \mathbb{Z} / 2$ on the Hermitian symmetric domain $\Omega\left(V^{+}(S)\right)=\Omega(T)$ of the type IV with respect to a subgroup $G \subset O^{+}(T)$ of a finite index (the symmetry group of the Lie algebra \mathfrak{g}. Here $O^{+}(T)$ is the index two subgroup of $O(T)$ which preserves $\Omega(T)$.

The automorphic form $\Phi(z)$ must have Fourier expension which gives the denominator identity for the Lie algebra \mathfrak{g} :

$$
\begin{align*}
& \Phi(z)=\sum_{w \in W} \operatorname{det}(w)(\exp (-2 \pi i(w(\rho), z))- \\
& \left.-\quad \sum_{a \in S \cap \mathbb{R}_{++} \overline{\mathcal{M}}} m(a) \exp (-2 \pi i(w(\rho+a), z))\right) \tag{1.6}
\end{align*}
$$

where all coefficients $m(a)$ must be integral. It also would be nice to calculate the infinite product expension (the Borcherds product) for the denominator identity of the Lie algebra \mathfrak{g}

$$
\begin{equation*}
\Phi(z)=\exp (-2 \pi i(\rho, z)) \prod_{\alpha \in \Delta_{+}}(1-\exp (-2 \pi i(\alpha, z)))^{m u l t(\alpha)} \tag{1.7}
\end{equation*}
$$

which gives multiplicities mult (α) of roots of the Lie algebra \mathfrak{g}. Here $\Delta_{+} \subset S$ (see below).

We need finiteness (or almost finiteness) of volume of \mathcal{M} for existence of such automorphic form.
(V) The automorphic form $\Phi(z)$ in $\Omega\left(V^{+}(S)\right)=\Omega(T)$ must be reflective. It means that the divisor (of zeros) of $\Phi(z)$ is union of rational quadratic divisors which are orthogonal to roots of T. Here, for $\beta \in T$ with $\beta^{2}>0$ the rational quadratic divisor which is orthogonal to β, is equal to

$$
D_{\beta}=\{\mathbb{C} \omega \in \Omega(T) \mid(\omega, \beta)=0\} .
$$

The property (V) is valid in a neighbourhood of the cusp of $\Omega(T)$ where the infinite product (1.7) converges, but we want to have it globally.

We believe that with this property the set of data (IV), (V) is finite. This property satisfies in all known interesting cases.

Lorentzian Kac-Moody superalgebra \mathfrak{g} corresponding to data (I) - (V), which is a Kac-Moody-Borcherds superablebra or an automorphic correction given by $\Phi(z)$ of the Kac-Moody algebra $\mathfrak{g}(A)$ given by the generalized Cartan matrix (1.3) above, is defined by the sequence $P^{\prime} \subset S$ of simple roots. It is divided to the set $P^{\prime r e}$ of simple real root (all of them are even) and the set $P^{\prime} \frac{i m}{0}$ of even simple imaginary roots and the set $P^{\prime \frac{1}{1}}$ of odd imaginary roots. Thus, $P^{\prime}=P^{\prime r e} \cup P^{\prime} \frac{i m}{0} \cup P^{\prime} \frac{i m}{1}$.

For a primitive $a \in S \cap \mathbb{R}_{++} \mathcal{M}$ with $(a, a)=0$ one should find
$\tau(n a) \in \mathbb{Z}, n \in \mathbb{N}$, from the indentity with the formal variable t :

$$
1-\sum_{k \in \mathbb{N}} m(k a) t^{k}=\prod_{n \in \mathbb{N}}\left(1-t^{n}\right)^{\tau(n a)}
$$

The set $P^{\prime r e}=P$ where P is defined in (III). The set $P^{\prime r e}$ is even: $P^{\prime r e}=P^{\prime r e}{ }_{\overline{0}}, P^{\prime r e}{ }_{\overline{1}}=\emptyset$. The set

$$
\begin{align*}
& P^{\prime i m}=\left\{m(a) a \mid a \in S \cap \mathbb{R}_{++} \mathcal{M},(a, a)<0 \text { and } m(a)>0\right\} \cup \\
& \quad\left\{\tau(a) a \mid a \in S \cap \mathbb{R}_{++} \overline{\mathcal{M}},(a, a)=0 \text { and } \tau(a)>0\right\} \tag{1.8}
\end{align*}
$$

$$
\begin{align*}
& P_{\overline{1}}^{\prime i m}=\left\{-m(a) a \mid a \in S \cap \mathbb{R}_{++} \mathcal{M},(a, a)<0 \text { and } m(a)<0\right\} \cup \\
& \left\{-\tau(a) a \mid a \in S \cap \mathbb{R}_{++} \overline{\mathcal{M}},(a, a)=0 \text { and } \tau(a)<0\right\} \tag{1.9}
\end{align*}
$$

Here, $k a$ for $k \in \mathbb{N}$ means that we repeat a exactly k times in the sequence.

The generalized Kac-Moody superalgebra \mathfrak{g} is the Lie superalgebra with generators h_{r}, e_{r}, f_{r} where $r \in P^{\prime}$. All generators h_{r} are even, generators e_{r}, f_{r} are even (respectively odd) if r is even (respectively odd).

They have defining relations 1$)-5$) of \mathfrak{g} which are given below.

1) The map $r \rightarrow h_{r}$ for $r \in P^{\prime}$ gives an embedding $S \otimes \mathbb{C}$ to \mathfrak{g} as Abelian subalgebra (it is even).
2) $\left[h_{r}, e_{r^{\prime}}\right]=\left(r, r^{\prime}\right) e_{r^{\prime}}$ and $\left[h_{r}, f_{r^{\prime}}\right]=-\left(r, r^{\prime}\right) f_{r^{\prime}}$.
3) $\left[e_{r}, f_{r^{\prime}}\right]=h_{r}$ if $r=r^{\prime}$, and it is 0 , if $r \neq r^{\prime}$.
4) $\left(a d e_{r}\right)^{1-2\left(r, r^{\prime}\right) /(r, r)} e_{r^{\prime}}=\left(a d f_{r}\right)^{1-2\left(r, r^{\prime}\right) /(r, r)} f_{r^{\prime}}=0$, if $r \neq r^{\prime}$ и $(r, r)>0$ (equivalently, $r \in P^{\prime r e}$).
5) If $\left(r, r^{\prime}\right)=0$, then $\left[e_{r}, e_{r^{\prime}}\right]=\left[f_{r}, f_{r^{\prime}}\right]=0$.

The algebra \mathfrak{g} is graded by the lattice S where the generators h_{r}, e_{r} and f_{r} have weights $0, r \in S$ and $-r \in S$ respectively. We have

$$
\begin{equation*}
\mathfrak{g}=\bigoplus_{\alpha \in S} \mathfrak{g}_{\alpha}=\mathfrak{g}_{0} \bigoplus\left(\bigoplus_{\alpha \in \Delta_{+}} \mathfrak{g}_{\alpha}\right) \bigoplus\left(\bigoplus_{\alpha \in-\Delta_{+}} \mathfrak{g}_{\alpha}\right) \tag{1.10}
\end{equation*}
$$

where $\mathfrak{g}_{0}=S \otimes \mathbb{C}$, and Δ is the set of roots (that is the set of $\alpha \in S$ with $\left.\operatorname{dim} \mathfrak{g}_{\alpha} \neq 0\right)$. The root α is positive $\left(\alpha \in \Delta_{+}\right)$if $(\alpha, \mathcal{M}) \leq 0$. By definition, the multiplicity of $\alpha \in \Delta$ is equal to $\operatorname{mult}(\alpha)=\operatorname{dim} \mathfrak{g}_{\alpha, \overline{0}}-\operatorname{dim} \mathfrak{g}_{\alpha, \overline{1}}$.

For this definition, we use results by Kac-Moody, Borcherds, authors, U. Ray.

The case we consider here.

We consider the case when lattices S for the data (I)-(III) are even hyperbolic lattices, $W \subset O(S)$ is the full group $W=W^{(2)}(S)$ generated by reflections in all elements of S with square 2 . They give roots. As the set $P(\mathcal{M})$ of perpendicular roots to the fundamental chamber \mathcal{M} of $W^{(2)}(S)$, we take roots with square 2 .
In our papers 1995 - 2002 we considered this case and some other cases for the rank 3 case, and we constructed many Lorentzian Lie algebras for $\mathrm{rk} S=3$. Here we want to extend these results for higher ranks.

First, all even hyperbolic lattices S of rank $\mathrm{rk} S \geq 3$ with $[O(S)$: $\left.W^{(2)}(S)\right]<\infty$ (equivalently, they are elliptically reflective for $\left.W^{(2)}(S)\right)$ were classified in my papers for $\mathrm{rk} S \neq 4$, and by Vinberg for $\mathrm{rk} S=4$ around 1982. They are important for K3 surfaces: $K 3$ surface X with Picard lattice $S_{X}=S(-1)$ has finite automorphism group, and only for these Picard lattices if $\operatorname{rk} S_{X} \geq 3$. For such K3 surfaces, the set $P(\mathcal{M})$ is finite and gives all classes of non-singular rational curves of X.

Second, we find those of these cases which have the lattice Weyl vector ρ for $P(\mathcal{M})$: Thus, there must exist $\rho \in S \otimes \mathbb{Q}$ such that

$$
\rho \cdot \alpha=-1 \quad \forall \alpha \in P(\mathcal{M}) .
$$

For the corresponding $K 3$ surfaces X, the set $P(\mathcal{M})$ gives classes of all non-singular rational curves. They are lines for the hyperplane section defined by ρ.

Theorem 1. The following and only the following elliptically 2reflective even hyperbolic lattices S of $\operatorname{rk} S \geq 3$ have a lattice Weyl vector ρ for $W^{(2)}(S)$ (equivalently, for $P\left(\mathcal{M}^{(2)}(S)\right.$). We order them by the rank and the absolute value of the determinant.

Rank 3: $S_{3,2}=U \oplus A_{1}, S_{3,8, a}=\langle-2\rangle \oplus 2 A_{1}$,
$S_{3,8, b}=\left(\langle-24\rangle \oplus A_{2}\right)[1 / 3,-1 / 3,1 / 3]$,
$S_{3,18}=U(3) \oplus A_{1}, S_{3,32, a}=U(4) \oplus A_{1}, S_{3,32, b}=\langle-8\rangle \oplus 2 A_{1}$,
$S_{3,32, c}=U(8)[1 / 2,1 / 2] \oplus A_{1}, S_{3,72}=\langle-24\rangle \oplus A_{2}, S_{3,128, a}=U(8) \oplus$ $A_{1}, S_{3,128, b}=\langle-32\rangle \oplus 2 A_{1}, S_{3,288}=U(12) \oplus A_{1}$,
anisotropic cases: $S_{3,12}=\langle-4\rangle \oplus A_{2}, S_{3,24}=\langle-6\rangle \oplus 2 A_{1}, S_{3,36}=$ $\langle-12\rangle \oplus A_{2}, S_{3,108}=\langle-36\rangle \oplus A_{2}$. (15 cases $)$.

Rank 4: $S_{4,3}=U \oplus A_{2}, S_{4,4}=U \oplus 2 A_{1}, S_{4,12}=U(2) \oplus A_{2}$, $S_{4,16, a}=\langle-2\rangle \oplus 3 A_{1}, S_{4,16, b}=\langle-4\rangle \oplus A_{3}, S_{4,27, a}=U(3) \oplus A_{2}$, $S_{4,27, b}=\left\langle\begin{array}{rr}0 & -3 \\ -3 & 2\end{array}\right\rangle \oplus A_{2}, S_{4,64, a}=U(4) \oplus 2 A_{1}, S_{4,64, b}=\langle-8\rangle \oplus$ $3 A_{1}, S_{4,108}=U(6) \oplus A_{2}$,
$S_{4,28}=\left\langle\begin{array}{rrrr}-2 & -1 & -1 & -1 \\ -1 & 2 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ -1 & 0 & 0 & 2\end{array}\right\rangle$ (anisotropic case). (11 cases)

Rank 5: $S_{5,4}=U \oplus A_{3}, S_{5,8}=U \oplus 3 A_{1}, S_{5,16}=\langle-4\rangle \oplus D_{4}$, $S_{5,32, a}=\langle-2\rangle \oplus 4 A_{1}, S_{5,32, b}=\langle-8\rangle \oplus D_{4}, S_{5,64}=\langle-16\rangle \oplus D_{4}$, $S_{5,128}=U(4) \oplus 3 A_{1} .(7$ cases $)$

Rank 6: $S_{6,4}=U \oplus D_{4}, S_{6,5}=U \oplus A_{4}, S_{6,9}=U \oplus 2 A_{2}, S_{6,16, a}=$ $U(2) \oplus D_{4}, S_{6,16, b}=U \oplus 4 A_{1}, S_{6,64, a}=\langle-2\rangle \oplus 5 A_{1}, S_{6,64, b}=$ $U(4) \oplus D_{4}, S_{6,81}=U(3) \oplus 2 A_{2}$. $(8$ cases $)$

Rank 7: $S_{7,4}=U \oplus D_{5}, S_{7,6}=U \oplus A_{5}, S_{7,128}=\langle-2\rangle \oplus 6 A_{1} .(3$ cases)

Rank 8: $S_{8,3}=U \oplus E_{6}, S_{8,4}=U \oplus D_{6}, S_{8,7}=U \oplus A_{6}, S_{8,16}=$ $U \oplus 2 A_{3}, S_{8,27}=U \oplus 3 A_{2}, S_{8,256}=\langle-2\rangle \oplus 7 A_{1}$. (6 cases)

Rank 9: $S_{9,2}=U \oplus E_{7}, S_{9,4}=U \oplus D_{7}, S_{9,8}=U \oplus A_{7}, S_{9,512}=$ $\langle-2\rangle \oplus 8 A_{1}$. (4 cases)

Rank 10: $S_{10,1}=U \oplus E_{8}, S_{10,4}=U \oplus D_{8}, S_{10,16}=U \oplus 2 D_{4}$, $S_{10,64}=U(2) \oplus 2 D_{4}$. (4 cases)

Rank 18: $S_{18,1}=U \oplus 2 E_{8}$. (1 case)

Рис. 1: The graph $\Gamma\left(P\left(\mathcal{M}^{(2)}\right)\right)$ for $U \oplus A_{2} \oplus A_{2}$ is $\operatorname{St}\left(\widetilde{\mathbb{A}_{2}}, \widetilde{\mathbb{A}_{2}}\right)$.
For all these cases, we found generalized Cartan matrices A which define hyperbolic Kac-Moody Lie algebras $\mathfrak{g}(A)$. Below, for some of these cases, you can see Dynkin diagrams of elements $P(\mathcal{M})$ which are equivalent to the generalized Cartan matrices A. Equivalently, they describe graphs of all non-singular rational curves on the corresponding K3 surfaces. All of them have the degree 1 for the corresponding lattice Weyl vectors ρ.

Рис. 2: The graph $\Gamma\left(P\left(\mathcal{M}^{(2)}\right)\right)$ for $U(2) \oplus 2 D_{4}$.

Рис. 3: The graph $\Gamma\left(P\left(\mathcal{M}^{(2)}\right)\right)$ for $U(4) \oplus D_{4}$.

Рис. 4: The graph $\Gamma\left(P\left(\mathcal{M}^{(2)}\right)\right)$ for $\langle-4\rangle \oplus D_{4}$.

Рис. 5: The graph $\Gamma\left(P\left(\mathcal{M}^{(2)}\right)\right)$ for $\langle-8\rangle \oplus D_{4}$.

Рис. 6: The graph $\Gamma\left(P\left(\mathcal{M}^{(2)}\right)\right)$ for $\langle-16\rangle \oplus D_{4}$.

${ }^{\circ}$

Рис. 7: The graph $\Gamma\left(P\left(\mathcal{M}^{(2)}\right)\right)$ for $U(2) \oplus A_{2}$.

Рис. 8: The graph $\Gamma\left(P\left(\mathcal{M}^{(2)}\right)\right)$ for $\langle-4\rangle \oplus A_{3}$.

Pис. 9: The graph $\Gamma\left(P\left(\mathcal{M}^{(2)}\right)\right)$ for $U(3) \oplus A_{2}$.

Рис. 10: The graph $\Gamma\left(P\left(\mathcal{M}^{(2)}\right)\right)$ for $S_{4,27, b}$.

Puc. 11: The graph $\Gamma\left(P\left(\mathcal{M}^{(2)}\right)\right)$ for $S_{4,28}$.

Рис. 12: The graph $\Gamma\left(P\left(\mathcal{M}^{(2)}\right)\right)$ for $U \oplus A_{1}$.
Almost for all these cases, we found the automorphic form $\Phi(z)$ which gives the automorphic correction and finishes construction of the corresponding Lorentzian Kac-Moody algebra.
We found the automorphic forms $\Phi(z)$ which give automorphic corrections of the corresponding hyperbolic Kac-Moody algebras defined by generalized Cartan matrices of $P(\mathcal{M})$ for $W^{(2)}(S)$ (or by the corresponding Dynkin diagrams) for the following series of hyperbolic lattices S of Theorem 1:

1) For the lattices $U \oplus K$,

$$
\begin{aligned}
& K=A_{1} ; 2 A_{1}, A_{2} ; 3 A_{1}, A_{3} ; 4 A_{1}, 2 A_{2}, A_{4}, D_{4} ; A_{5}, D_{5} ; \\
& 3 A_{2}, 2 A_{3}, A_{6}, D_{6}, E_{6} ; A_{7}, D_{7}, E_{7} ; 2 D_{4}, D_{8}, E_{8}, 2 E_{8}
\end{aligned}
$$ and $U(2) \oplus 2 D_{4}$;

2) For the lattices $\langle-2\rangle \oplus k A_{1}, 2 \leq k \leq 9$ (the case $k=9$ is parabolic).
3) For the lattices $U(4) \oplus k A_{1}, 1 \leq k \leq 4$ (the case $k=4$ is parabolic).
4) For the lattices $U(3) \oplus k A_{2}, k=1,2,3$ (the last case is parabolic).
5) For the lattices $U(2) \oplus D_{4}$ and $U(4) \oplus D_{4}$.
6) For the 2-reflective lattices of parabolic type $U \oplus K$, $K=A_{1}(2), A_{1}(3), A_{1}(4), D_{2}(2), A_{2}(2), A_{2}(3), A_{3}(2), D_{4}(2), E_{8}(2)$.

All these automorphic forms $\Phi(z)$ have divisors which are sums of rational quadratic divisors with multiplicity one on the corresponding Hermitian symmetric domains $\Omega(T)$ which are orthogonal to 2roots of the corresponding lattices $T=U(m) \oplus S$ (for some $m>0$) of signature $(n, 2)$.

Thus, K3 surfaces with Picard lattice S (they have finite automorphism group and their non-singular rational curves are lines for the polarization ρ) are mirror symmetric to K3 surfaces with the corresponding transcendental lattice $T=U(m) \oplus S$ (for some $m>0$) (their discriminants of moduli are given by zeros of the automorphic forms $\Phi(z)$ with irreducible divisors of multiplicity one).

This mirror symmetry (we call it arithmetic mirror symmetry) is given by the automorphic form $\Phi(z)$ which we construct and by the corresponding Lorentzian Kac-Moody algebra with the denominator identity and the root lattice defined by $\Phi(z)$ and S. It can be considered as a kind of Physical evidence of this mirror symmetry.

Almost for all cases, we construct automorphic forms $\Phi(z)$ using quasy pull-back from some automorphic forms of high rank (by embedding $T \subset L$) and by restricting of the automorphic form on $\Omega(L)$ to the subdomain $\Omega(T)$.

For the Series 1), we use Borcherds automorphic form Φ_{12} of weight 12 and character det with respect to $O^{+}\left(I_{26,2}\right)$ on $\Omega\left(I_{26,2}\right)$ where $I I_{26,2}$ is even unimodular lattice of signature $(26,2)$.

For the Series 2), the automorphic correction is defined by $L=$ $U(2) \oplus\langle-2\rangle \oplus 8\langle 2\rangle$ and by the modular form

$$
\Delta_{5, D_{7}}=\operatorname{Lift}\left(\psi_{5, D_{7}}\right) \in S_{5}\left(O^{+}(U(2) \oplus\langle-2\rangle \oplus 8\langle 2\rangle), \chi_{2}\right)
$$

where

$$
\begin{equation*}
\psi_{5, D_{7}}(\tau, \mathfrak{z})=\eta(\tau)^{9} \vartheta\left(z_{1}\right) \cdot \ldots \cdot \vartheta\left(z_{7}\right) \tag{1.19}
\end{equation*}
$$

is Jacobi form and Lift is arithmetic lifting of Jacobi forms.
For the Series 3), the automorphic correction is given by $L=$ $2 U \oplus 3 A_{1}$ and

$$
\begin{equation*}
\Delta_{3,3 A_{1}}=\operatorname{Lift}\left(\eta(\tau)^{9} \vartheta\left(z_{1}\right) \vartheta\left(z_{2}\right) \vartheta\left(z_{3}\right)\right) \in S_{3}\left(O^{+}\left(2 U \oplus 3 A_{1}\right)\right) . \tag{1.12}
\end{equation*}
$$

For the Series 4), the automorphic correction is given by $L=$ $2 U(3) \oplus 3 A_{2}$ and

$$
\Delta_{3,3 A_{2}} \in M_{3}\left(O^{+}\left(2 U(3) \oplus 3 A_{2}\right), \chi_{2}\right)
$$

which gives a strongly 2 -reflective modular form with the complete 2 -divisor where χ_{2} is a binary character of the orthogonal group. It is constructed in our preprint.

Series 5): For $S=U(2) \oplus D_{4}$ we found two automorphic corrections: one with $T=U \oplus U(2) \oplus D_{4}$ and $\Phi(z)$ of weight 40; another with $T=2 U \oplus D_{4}$ and $\Phi(z)$ of weight 8 .

For $S=U(4) \oplus D_{4}$, we found automorphic correction with $T=$ $2 U(4) \oplus D_{4}$ and $\Phi(z)$ of weight 6 .

For the Series 6), we also use Borcherds automorphic form Φ_{12} of weight 12 and character det with respect to $O^{+}\left(I_{26,2}\right)$ on $\Omega\left(I_{26,2}\right)$ where $I I_{26,2}$ is even unimodular lattice of signature $(26,2)$.

For the series 1), we write $I I_{26,2}$ as $2 U \oplus N_{j}$ where N_{j} is Niemeier lattice, and we embed $K \subset N_{j}$. For the series 6), we write $I I_{26,2}$ as $2 U \oplus$ Leech and we embed $K \subset$ Leech.

Look other details in our preprint.

We hope to extend these results to other cases. Because of finiteness results, we have a hope to obtain finite classification finally, and construct a theory of Lorentzian (or hyperbolic automorphic) Lie algebras.

