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1 Lorentzian Kac�Moody algebras: general de�nition

Lorentzian Kac�Moody algebras which we consider are given by

data (I) � (V) below. We follow the general theory of Lorentzian

Kac�Moody algebras from our papers 1994 � 2003 where we used

ideas and results by Kac�Moody and Borcherds

(I) The datum (I) is given by a hyperbolic lattice S of the rank

rkS ≥ 3.

We recall that a lattice (equivalently, a non-degenerate symmetric

bilinear form over Z) M means that M is a free Z-module M
of a �nite rank with symmetric Z-bilinear non-degenerate pairing
(x, y) ∈ Z for x, y ∈M . A lattice S is hyperbolic if the corresponding

symmetric bilinear form S ⊗ R over R has signature (n, 1) where

rkS = n + 1.

(II) This datum is given by a Weyl group which is a re�ection

subgroup W ⊂ O(S) of the hyperbolic lattice S from (I). It is

generated by re�ections in roots of S.

We recall that an element α of a lattice M is called root if α2 =

(α, α) > 0 and α2 |2(α,M) that is α2|2(α, x) for any x ∈ M . A

root α ∈M de�nes the re�ection

sα : x→ x− 2(x, α)

α2
α, ∀x ∈M (1.1)

which belongs to O(M). The re�ection sα is characterized by the

properties: sα(α) = −α and sα|(α)⊥M is identity.
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(III) This datum is given by the set of simple real roots P =

P (M) ⊂ S of roots which are perpendicular and directed outwards

to the fundamental chamber M ⊂ L(S) of the Weyl group W

from the data (II) acting in the hyperbolic space L(S) de�ned

by S. Each codimension one face of M must have exactly one

element α ∈ P (M) which is perpendicular to this face and directed

outwards. The set P = P (M) must have the lattice Weyl vector

ρ ∈ S ⊗Q which means that

(ρ, α) = −α
2

2
∀α ∈ P = P (M). (1.2)

The fundamental chamber M must have either a �nite volume

(then S is called elliptically re�ective) and then ρ2 < 0 and P =

P (M) is �nite (elliptic case), or almost �nite volume (then S is

called parabolically re�ective) and ρ2 = 0, but ρ ̸= 0 (parabolic

case). Here almost �nite volume means that M has �nite volume

in any cone with the vertex R++ρ at in�nity of M.

We recall that, for a hyperbolic lattice S, we can consider the

cone

V (S) = {x ∈ S ⊗ R | x2 < 0}
of S, and its half cone V +(S). Any two elements x, y ∈ V +(S)

satisfy (x, y) < 0. The half-cone V +(S) de�nes the hyperbolic space

of S,

L(S) = V +(S)/R++ = {R++x | x ∈ V +(S)}
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of the curvature (−1) with the hyperbolic distance

ch ρ(R++x,R++y) =
−(x, y)√
x2y2

, x, y ∈ V +(S).

Here R++ is the set of all positive real numbers, and R+ is the

set of all non-negative real numbers. Any δ ∈ S ⊗ R with δ2 > 0

de�nes a half-space

H+
δ = {R++x ∈ L+(S) | (x, δ) ≤ 0}

of L(S) bounded by the hyperplane

Hδ = {R++x ∈ L+(S) | (x, δ) = 0} .

The δ is called orthogonal to the half-space H+
δ and the hyperplane

Hδ, and it is de�ned uniquely if δ2 > 0 is �xed. For a root α ∈ S,

the re�ection sα gives the re�ection of L+(S) with respect to the

hyperplane Hα, that is sα is identity on Hα, and sα(H+
α ) = H+

−α.

It is well-known that the group

O+(S) = {ϕ ∈ O(S) | ϕ(V +(S)) = V +(S)}

is discrete in L+(S) and has a fundamental domain of �nite volume.

The subgroup W ⊂ O(S) is its subgroup generated by re�ections

in hyperplanes of L+(S). It has the fundamental chamber

M = {R++x ∈ L+(S) | (P (M), x) ≤ 0}.
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The main invariant of the data (I) � (III) is the generalized

Cartan matrix

A =

(
2(α, α′)

(α, α)

)
= α, α′ ∈ P = P (M). (1.3)

It de�nes the corresponding hyperbolic Kac�Mody algebra g(A), by

Kac and Moody. It is graded by the lattice S. The next data (IV)

and (V) give the automorphic correction g of this algebra.

By my results and by Vinberg, we have �niteness (for elliptic

case) and almost �niteness (for parabolic case) for data 1) � 3).

(IV) For this datum, we need an extended lattice T = U(m)⊕S
(the symmetry lattice of the Lie algebra g) where

U =

(
0 −1

−1 0

)
, (1.4)

M(m) for a lattice M and m ∈ Q means that we multiply the

pairing of M by m, the orthogonal sum of lattices is denoted by

⊕. The lattice T de�nes the Hermitian symmetric domain of the

type IV

Ω(T ) = {Cω ⊂ T ⊗ C | (ω, ω) = 0, (ω, ω) < 0}+ (1.5)

where + means a choice of one (from two) connected components.

The domain Ω(T ) can be identi�ed with the complexi�ed cone
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Ω(V +(S)) = S ⊗ R + iV +(S) as follows: for the basis e1, e2 of

the lattice U with the matrix (1.4), we identify z ∈ Ω(V +(S))

with Cωz ∈ Ω(T ) where ωz = (z, z)e1/2 + e2/m⊕ z ∈ Ω(T )• (the

corresponding a�ne cone over Ω(T )). The main datum in (IV) is

a holomorphic automorphic form Φ(z), z ∈ Ω(V +(S)) = Ω(T )

of some weight k ∈ Z/2 on the Hermitian symmetric domain

Ω(V +(S)) = Ω(T ) of the type IV with respect to a subgroup

G ⊂ O+(T ) of a �nite index (the symmetry group of the Lie algebra

g. Here O+(T ) is the index two subgroup of O(T ) which preserves

Ω(T ).

The automorphic form Φ(z) must have Fourier expension which

gives the denominator identity for the Lie algebra g:

Φ(z) =
∑
w∈W

det(w)(exp(−2πi(w(ρ), z))−

−
∑

a∈S∩R++M

m(a)exp(−2πi(w(ρ + a), z))), (1.6)

where all coe�cients m(a) must be integral. It also would be nice

to calculate the in�nite product expension (the Borcherds product)

for the denominator identity of the Lie algebra g

Φ(z) = exp(−2πi(ρ, z))
∏
α∈∆+

(1− exp(−2πi(α, z)))mult(α) , (1.7)

which gives multiplicities mult(α) of roots of the Lie algebra g.

Here ∆+ ⊂ S (see below).
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We need �niteness (or almost �niteness) of volume of M for

existence of such automorphic form.

(V) The automorphic form Φ(z) in Ω(V +(S)) = Ω(T ) must be

re�ective. It means that the divisor (of zeros) of Φ(z) is union

of rational quadratic divisors which are orthogonal to roots of T .

Here, for β ∈ T with β2 > 0 the rational quadratic divisor which

is orthogonal to β, is equal to

Dβ = {Cω ∈ Ω(T ) | (ω, β) = 0}.
The property (V) is valid in a neighbourhood of the cusp of Ω(T )

where the in�nite product (1.7) converges, but we want to have it

globally.

We believe that with this property the set of data (IV), (V) is

�nite. This property satis�es in all known interesting cases.

Lorentzian Kac�Moody superalgebra g corresponding to data (I)

� (V), which is a Kac�Moody�Borcherds superablebra or an automorphic

correction given by Φ(z) of the Kac�Moody algebra g(A) given

by the generalized Cartan matrix (1.3) above, is de�ned by the

sequence P ′ ⊂ S of simple roots. It is divided to the set P ′ re of

simple real root (all of them are even) and the set P ′ im
0 of even

simple imaginary roots and the set P ′ im
1 of odd imaginary roots.

Thus, P ′ = P ′ re ∪ P ′ im
0 ∪ P ′ im

1 .

For a primitive a ∈ S ∩ R++M with (a, a) = 0 one should �nd
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τ (na) ∈ Z, n ∈ N, from the indentity with the formal variable t:

1−
∑
k∈N

m(ka)tk =
∏
n∈N

(1− tn)τ(na).

The set P ′ re = P where P is de�ned in (III). The set P ′ re is

even: P ′ re = P ′ re
0, P

′ re
1 = ∅. The set

P ′ im
0 = {m(a)a | a ∈ S ∩ R++M, (a, a) < 0 and m(a) > 0}∪

{τ (a)a | a ∈ S ∩ R++M, (a, a) = 0 and τ (a) > 0}; (1.8)

P ′ im
1 = {−m(a)a | a ∈ S ∩ R++M, (a, a) < 0 and m(a) < 0}∪

{−τ (a)a | a ∈ S ∩ R++M, (a, a) = 0 and τ (a) < 0} (1.9)

Here, ka for k ∈ N means that we repeat a exactly k times in the

sequence.

The generalized Kac�Moody superalgebra g is the Lie superalgebra

with generators hr, er, fr where r ∈ P ′. All generators hr are

even, generators er, fr are even (respectively odd) if r is even

(respectively odd).

They have de�ning relations 1) � 5) of g which are given below.

1) The map r → hr for r ∈ P ′ gives an embedding S ⊗ C to g

as Abelian subalgebra (it is even).

2) [hr, er′] = (r, r′)er′ and [hr, fr′] = −(r, r′)fr′.

3) [er, fr′] = hr if r = r′, and it is 0, if r ̸= r′.
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4) (ad er)
1−2(r,r′)/(r,r)er′ = (ad fr)

1−2(r,r′)/(r,r)fr′ = 0,

if r ̸= r′ è (r, r) > 0 (equivalently, r ∈ P ′ re).

5) If (r, r′) = 0, then [er, er′] = [fr, fr′] = 0.

The algebra g is graded by the lattice S where the generators

hr, er and fr have weights 0, r ∈ S and −r ∈ S respectively. We

have

g =
⊕
α∈S

gα = g0
⊕⊕

α∈∆+

gα

⊕ ⊕
α∈−∆+

gα

 , (1.10)

where g0 = S ⊗ C, and ∆ is the set of roots (that is the set of

α ∈ S with dim gα ̸= 0). The root α is positive (α ∈ ∆+) if

(α,M) ≤ 0. By de�nition, the multiplicity of α ∈ ∆ is equal to

mult(α) = dim gα,0 − dim gα,1.

For this de�nition, we use results by Kac�Moody, Borcherds,

authors, U. Ray.
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The case we consider here.

We consider the case when lattices S for the data (I)�(III) are

even hyperbolic lattices, W ⊂ O(S) is the full group W = W (2)(S)

generated by re�ections in all elements of S with square 2. They give

roots. As the set P (M) of perpendicular roots to the fundamental

chamber M of W (2)(S), we take roots with square 2.

In our papers 1995 � 2002 we considered this case and some

other cases for the rank 3 case, and we constructed many Lorentzian

Lie algebras for rkS = 3. Here we want to extend these results for

higher ranks.

First, all even hyperbolic lattices S of rank rkS ≥ 3 with [O(S) :

W (2)(S)] < ∞ (equivalently, they are elliptically re�ective for

W (2)(S)) were classi�ed in my papers for rkS ̸= 4, and by Vinberg

for rkS = 4 around 1982. They are important for K3 surfaces: K3

surface X with Picard lattice SX = S(−1) has �nite automorphism

group, and only for these Picard lattices if rkSX ≥ 3. For such K3

surfaces, the set P (M) is �nite and gives all classes of non-singular

rational curves of X.

Second, we �nd those of these cases which have the lattice Weyl

vector ρ for P (M): Thus, there must exist ρ ∈ S ⊗Q such that

ρ · α = −1 ∀α ∈ P (M).

For the corresponding K3 surfaces X, the set P (M) gives classes of

all non-singular rational curves. They are lines for the hyperplane

section de�ned by ρ.
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Theorem 1. The following and only the following elliptically 2-

re�ective even hyperbolic lattices S of rkS ≥ 3 have a lattice Weyl

vector ρ for W (2)(S) (equivalently, for P (M(2)(S))). We order

them by the rank and the absolute value of the determinant.

Rank 3: S3,2 = U ⊕ A1, S3,8,a = ⟨−2⟩ ⊕ 2A1,

S3,8,b = (⟨−24⟩ ⊕ A2)[1/3,−1/3, 1/3],

S3,18 = U(3) ⊕ A1, S3,32,a = U(4) ⊕ A1, S3,32,b = ⟨−8⟩ ⊕ 2A1,

S3,32,c = U(8)[1/2, 1/2]⊕A1, S3,72 = ⟨−24⟩⊕A2, S3,128,a = U(8)⊕
A1, S3,128,b = ⟨−32⟩ ⊕ 2A1, S3,288 = U(12)⊕ A1,

anisotropic cases: S3,12 = ⟨−4⟩ ⊕ A2, S3,24 = ⟨−6⟩ ⊕ 2A1, S3,36 =

⟨−12⟩ ⊕ A2, S3,108 = ⟨−36⟩ ⊕ A2. (15 cases).

Rank 4: S4,3 = U ⊕ A2, S4,4 = U ⊕ 2A1, S4,12 = U(2) ⊕ A2,

S4,16,a = ⟨−2⟩ ⊕ 3A1, S4,16,b = ⟨−4⟩ ⊕ A3, S4,27,a = U(3) ⊕ A2,

S4,27,b =

⟨
0 −3

−3 2

⟩
⊕A2, S4,64,a = U(4)⊕ 2A1, S4,64,b = ⟨−8⟩ ⊕

3A1, S4,108 = U(6)⊕ A2,

S4,28 =

⟨ −2 −1 −1 −1

−1 2 0 0

−1 0 2 0

−1 0 0 2

⟩
(anisotropic case). (11 cases)
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Rank 5: S5,4 = U ⊕ A3, S5,8 = U ⊕ 3A1, S5,16 = ⟨−4⟩ ⊕ D4,

S5,32,a = ⟨−2⟩ ⊕ 4A1, S5,32,b = ⟨−8⟩ ⊕ D4, S5,64 = ⟨−16⟩ ⊕ D4,

S5,128 = U(4)⊕ 3A1. (7 cases)

Rank 6: S6,4 = U ⊕D4, S6,5 = U ⊕ A4, S6,9 = U ⊕ 2A2, S6,16,a =

U(2) ⊕ D4, S6,16,b = U ⊕ 4A1, S6,64,a = ⟨−2⟩ ⊕ 5A1, S6,64,b =

U(4)⊕D4, S6,81 = U(3)⊕ 2A2. (8 cases)

Rank 7: S7,4 = U ⊕ D5, S7,6 = U ⊕ A5, S7,128 = ⟨−2⟩ ⊕ 6A1. (3

cases)

Rank 8: S8,3 = U ⊕ E6, S8,4 = U ⊕ D6, S8,7 = U ⊕ A6, S8,16 =

U ⊕ 2A3, S8,27 = U ⊕ 3A2, S8,256 = ⟨−2⟩ ⊕ 7A1. (6 cases)

Rank 9: S9,2 = U ⊕ E7, S9,4 = U ⊕ D7, S9,8 = U ⊕ A7, S9,512 =

⟨−2⟩ ⊕ 8A1. (4 cases)

Rank 10: S10,1 = U ⊕ E8, S10,4 = U ⊕ D8, S10,16 = U ⊕ 2D4,

S10,64 = U(2)⊕ 2D4. (4 cases)

Rank 18: S18,1 = U ⊕ 2E8 . (1 case)
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Ðèñ. 1: The graph Γ(P (M(2))) for U ⊕ A2 ⊕ A2 is St(Ã2, Ã2).

For all these cases, we found generalized Cartan matrices A

which de�ne hyperbolic Kac�Moody Lie algebras g(A). Below, for

some of these cases, you can see Dynkin diagrams of elements

P (M) which are equivalent to the generalized Cartan matrices

A. Equivalently, they describe graphs of all non-singular rational

curves on the corresponding K3 surfaces. All of them have the

degree 1 for the corresponding lattice Weyl vectors ρ.
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Ðèñ. 2: The graph Γ(P (M(2))) for U(2)⊕ 2D4.
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Ðèñ. 3: The graph Γ(P (M(2))) for U(4)⊕D4.
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Ðèñ. 4: The graph Γ(P (M(2))) for ⟨−4⟩ ⊕D4.
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Ðèñ. 5: The graph Γ(P (M(2))) for ⟨−8⟩ ⊕D4.
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Ðèñ. 6: The graph Γ(P (M(2))) for ⟨−16⟩ ⊕D4.
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Ðèñ. 7: The graph Γ(P (M(2))) for U(2)⊕ A2.
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Ðèñ. 8: The graph Γ(P (M(2))) for ⟨−4⟩ ⊕ A3.
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Ðèñ. 9: The graph Γ(P (M(2))) for U(3)⊕ A2.
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Ðèñ. 10: The graph Γ(P (M(2))) for S4,27,b.
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Ðèñ. 11: The graph Γ(P (M(2))) for S4,28.

17



a b

c

Ðèñ. 12: The graph Γ(P (M(2))) for U ⊕ A1.

Almost for all these cases, we found the automorphic form Φ(z)

which gives the automorphic correction and �nishes construction

of the corresponding Lorentzian Kac�Moody algebra.

We found the automorphic forms Φ(z) which give automorphic

corrections of the corresponding hyperbolic Kac�Moody algebras

de�ned by generalized Cartan matrices of P (M) for W (2)(S) (or

by the corresponding Dynkin diagrams) for the following series of

hyperbolic lattices S of Theorem 1:

1) For the lattices U ⊕K,

K = A1; 2A1, A2; 3A1, A3; 4A1, 2A2, A4, D4; A5, D5;

3A2, 2A3, A6, D6, E6; A7, D7, E7; 2D4, D8, E8, 2E8

and U(2)⊕ 2D4;

2) For the lattices ⟨−2⟩ ⊕ kA1, 2 ≤ k ≤ 9 (the case k = 9 is

parabolic).

3) For the lattices U(4) ⊕ kA1, 1 ≤ k ≤ 4 (the case k = 4 is

parabolic).
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4) For the lattices U(3) ⊕ kA2, k = 1, 2, 3 (the last case is

parabolic).

5) For the lattices U(2)⊕D4 and U(4)⊕D4.

6) For the 2-re�ective lattices of parabolic type U ⊕K,

K = A1(2), A1(3), A1(4), D2(2), A2(2), A2(3), A3(2), D4(2), E8(2).

All these automorphic forms Φ(z) have divisors which are sums of

rational quadratic divisors with multiplicity one on the corresponding

Hermitian symmetric domains Ω(T ) which are orthogonal to 2-

roots of the corresponding lattices T = U(m)⊕S (for somem > 0)

of signature (n, 2).

Thus, K3 surfaces with Picard lattice S (they have �nite automorphism

group and their non-singular rational curves are lines for the polarization

ρ) are mirror symmetric to K3 surfaces with the corresponding

transcendental lattice T = U(m) ⊕ S (for some m > 0) (their

discriminants of moduli are given by zeros of the automorphic forms

Φ(z) with irreducible divisors of multiplicity one).

This mirror symmetry (we call it arithmetic mirror symmetry)

is given by the automorphic form Φ(z) which we construct and by

the corresponding Lorentzian Kac�Moody algebra with the denominator

identity and the root lattice de�ned by Φ(z) and S. It can be

considered as a kind of Physical evidence of this mirror symmetry.
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Almost for all cases, we construct automorphic forms Φ(z) using

quasy pull-back from some automorphic forms of high rank (by

embedding T ⊂ L) and by restricting of the automorphic form on

Ω(L) to the subdomain Ω(T ).

For the Series 1), we use Borcherds automorphic form Φ12 of

weight 12 and character det with respect to O+(II26,2) on Ω(II26,2)

where II26,2 is even unimodular lattice of signature (26, 2).

For the Series 2), the automorphic correction is de�ned by L =

U(2)⊕ ⟨−2⟩ ⊕ 8⟨2⟩ and by the modular form

∆5,D7 = Lift(ψ5, D7) ∈ S5(O
+(U(2)⊕ ⟨−2⟩ ⊕ 8⟨2⟩), χ2)

where

ψ5, D7(τ, z) = η(τ )9 ϑ(z1) · . . . · ϑ(z7) (1.11)

is Jacobi form and Lift is arithmetic lifting of Jacobi forms.

For the Series 3), the automorphic correction is given by L =

2U ⊕ 3A1 and

∆3,3A1 = Lift(η(τ )9ϑ(z1)ϑ(z2)ϑ(z3)) ∈ S3(O
+(2U ⊕ 3A1)). (1.12)
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For the Series 4), the automorphic correction is given by L =

2U(3)⊕ 3A2 and

∆3, 3A2 ∈M3(O
+(2U(3)⊕ 3A2), χ2)

which gives a strongly 2-re�ective modular form with the complete

2-divisor where χ2 is a binary character of the orthogonal group.

It is constructed in our preprint.

Series 5): For S = U(2)⊕D4 we found two automorphic corrections:

one with T = U ⊕ U(2)⊕D4 and Φ(z) of weight 40; another with

T = 2U ⊕D4 and Φ(z) of weight 8.

For S = U(4)⊕D4, we found automorphic correction with T =

2U(4)⊕D4 and Φ(z) of weight 6.

For the Series 6), we also use Borcherds automorphic form Φ12 of

weight 12 and character det with respect to O+(II26,2) on Ω(II26,2)

where II26,2 is even unimodular lattice of signature (26, 2).

For the series 1), we write II26,2 as 2U⊕Nj where Nj is Niemeier

lattice, and we embed K ⊂ Nj. For the series 6), we write II26,2
as 2U ⊕ Leech and we embed K ⊂ Leech.

Look other details in our preprint.

We hope to extend these results to other cases. Because of �niteness

results, we have a hope to obtain �nite classi�cation �nally, and

construct a theory of Lorentzian (or hyperbolic automorphic) Lie

algebras.
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