First results from BM@N technical run with

 deuteron beamD. Baranov, M. Kapishin, T. Mamontova, G. Pokatashkin, I. Rufanov, V. Vasendina and A. Zinchenko for the BM@N collaboration VBLHEP, JINR, Dubna, Russia

1. Motivation
2. Detector geometry
3. MC: actual acceptance vs optimized acceptance
4. Simulation of GEM response (Garfield++)
5. Technical run (Run 5, Dec. 2016):
\checkmark Alignment \& Lorentz shift correction
\checkmark Momentum resolution: MC vs Exp.
\checkmark PV reconstruction: MC vs Exp.
$\checkmark \Lambda$ reconstruction: MC vs Exp.
\checkmark Pile-up effect
6. Summary \& Plans

AGS NA49 BRAHMS

\checkmark In A+A collisions at Nuclotron energies: Opening thresholds for strange and multistrange hyperon production
\rightarrow strangeness at threshold
\checkmark In $p+p, p+n, p+A$ collisions:
hadron production in elementary reactions and ,cold‘ nuclear matter as ,reference‘ to pin down nuclear effects

Motivation

\checkmark In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities.
\checkmark Maximal yield predicted for $\checkmark_{\mathrm{s}}=4-5 \mathrm{~A} \mathrm{GeV}$ (stat. model) (interplay of Λ and light nuclei excitation function).
$\rightarrow \mathrm{BM} @ \mathrm{~N}$ energy range is suited for the search of hypernuclei.

Heavy Ion Collision experiments

BM@N: ${\sqrt{s_{N N}}}=2.3-3.5 \mathrm{GeV}$

Nuclotron and BM@N beam line

26 elements of magnetic optics:
$\rightarrow 8$ dipole magnets
$\rightarrow 18$ quadruple lenses
Requirements for Au beam:
\checkmark Minimum dead material
\rightarrow need to replace 40 m air intervals/foils with vacuum

Detector geometry

BM@N setup:

\checkmark Central tracker (GEM+Si) inside analyzing magnet to reconstruct AA interactions
\checkmark Outer tracker (DCH, CPC) behind magnet to link central tracks to ToF detectors
\checkmark ToF system based on mRPC and T0 detectors to identify hadrons and light nucleus
\checkmark ZDC calorimeter to measure centrality of AA collisions and form trigger
\checkmark Detectors to form T0, L1 centrality trigger and beam monitors
\checkmark Electromagnetic calorimeter for $\gamma, \mathrm{e}+\mathrm{e}-$

BM@N advantage: large aperture magnet ($\sim 1 \mathrm{~m}$ gap between poles)
\rightarrow fill aperture with coordinate detectors which sustain high multiplicities of particles
\rightarrow divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum ($\mathrm{p}>1-2 \mathrm{GeV} / \mathrm{c}$)
\rightarrow fill distance between magnet and "far" detectors with coordinate detectors

GEM tracker set-up in MC

Optimized positions of 6 GEM planes (MC-2015)
GEM position from target:
30-45-60-80-100-130 cm

Actual positions of 6 GEM planes in last technical runs (MC-2017)
Real GEM position from target:
51-86-116-151-181-216 cm

$\mathrm{K}_{\mathrm{s}}{ }^{0}$ simulation: MC-2015 vs MC-2017

MC-2015	MC-2017
DCM model (minbias events)	DCM model (minbias events)
$\mathrm{C}+\mathrm{C}$ interactions	$\mathrm{d}+\mathrm{C}$ interactions
$\mathrm{E}_{\text {kin }}=4 \mathrm{AGeV}$	$\mathrm{E}_{\text {kin }}=4 \mathrm{AGeV}$
0.5 M events	1 M events
GEM position from target: 30-45-60-80-100-130 cm	GEM position from target: 51-86-116-151-181-216 cm
$\mathrm{K}_{\mathrm{s}}{ }^{0}: 28229$ (gen) / 2500 (rec)	$\mathrm{K}_{\mathrm{s}}{ }^{0}: 19020$ (gen) / 167 (rec)
Eff. Rec. $=8.9 \%$	Eff. Rec. $=0.8 \%$
Magnetic field $\mathrm{B}=0.44 \mathrm{~T}$	Magnetic field $\mathrm{B}=0.7 \mathrm{~T}$

^ simulation: MC-2015 vs MC-2017

MC-2015	MC-2017
DCM model (minbias events)	DCM model (minbias events)
C+C interactions	d+C interactions
$\mathrm{E}_{\text {kin }}=4 \mathrm{AGeV}$	$\mathrm{E}_{\text {kin }}=4 \mathrm{AGeV}$
0.1 M events	1 M events
GEM position from target: 30-45-60-80-100-130 cm	GEM position from target: 51-86-116-151-181-216 cm
1: 11933 (gen) / 2359 (rec)	1: 43432 (gen) / 1832 (rec)
Eff. Rec. $=19.8$ \%	Eff. Rec. $=4.2$ \%
Magnetic field $\mathrm{B}=0.44 \mathrm{~T}$	Magnetic field $\mathrm{B}=0.7 \mathrm{~T}$

Simulation of GEM response: Garfield++

Garfield++ - framework for microsimulation physical processes in the gas detectors.

A charge particle passing through GEM chamber detecting volume ionizes the gas.

The through multiplayer GEM-cascades form avalanches which drift to the readout-plane and fire the strips on it.

Simulations of GEM response: Garfield++

X distribution of the avalanche centers at read-out plane. $\mathrm{B}=0.3 \mathrm{~T}$

X distribution of the avalanche centers at read-out plane. $\mathrm{B}=0.6 \mathrm{~T}$

Examples of the avalanche profile of single track at the read-out plane.

mean: 2.5 mm RMS: $\mathbf{4 2 0} \boldsymbol{\mu m}$

X distribution of the avalanche centers at read-out plane. $\mathrm{B}=0.9 \mathrm{~T}$

The results are presented for configuration: Ar+Isobuthan $=90: 10$.

Technical run in December 2016

BM@N set-up used in the deuteron run.

Example of an event reconstruction in the central tracker.

Trigger detectors

Technical run in December 2016

Data set

Magnetic field: 1600 A (0.79 T)
Events: $\quad 7 \mathrm{M}$ (0.76 M with Λ candidates)
Beam / Target: d/Cu, $E_{\text {kin }}=4 \mathrm{AGeV}$
Beam / Target: d/ $\mathrm{CH}_{2}, \quad E_{\text {kin }}=4 \mathrm{AGeV}$
Beam / Target: d/C, $\quad E_{\text {kin }}=4 \mathrm{AGeV}$
Gas in GEM: Ar + Isobuthan
GEM position from target: 51-86-116-151-181-216 cm

Alignment of GEM Z position

Proper Z position.

Residual distribution is horizontal along X for adjusted Z position along beam.

5 mm Z displacement.

Residual distribution is inclined along X for shifted Z position.
$\checkmark \Delta=\Delta_{\mathrm{z}} * \operatorname{tg}\left(\alpha_{\mathrm{x}}\right), \alpha_{\mathrm{x}}$ - track angle in XoZ
\checkmark Precision of Z position alignment $\sim 1 \mathrm{~mm}$

Alignment of rotation angles in XoY

α_{Z} displacement 0

α_{Z} displacement 0.1°

Effect of detector rotation in XoY:

\checkmark X residual distribution inclined along Y coordinate $\checkmark 0.1$ degree rotation is clearly detectable

$\checkmark \mathrm{X}$ residual of 2-nd station for straight lines (tracks) defined by hit combinations on stations 1 and 3.
\checkmark An assumption of the same resolution of all three stations leads from the 156 um residual to $\sigma=127$ um resolution. $\left(\sigma_{\mathrm{x}}=\sigma_{\Delta} / \sqrt{ } 1.5=156 / \sqrt{ } 1.5=127 \mathrm{um}\right)$

Beam trajectory in GEM detectors

\checkmark Averaged positions of deuteron beam with $E_{\text {kin }}=4 \mathrm{AGeV}$ reconstructed in 6 GEM planes at different values of magnetic field.
\checkmark Opposite electric field direction in consecutive GEM planes.

X residuals before Lorentz shift correction

X residuals vs X coordinate, $\delta \sim \mathrm{B}_{\mathrm{y}}$

X residuals after Lorentz shift correction

X residuals vs X coordinate, $\quad \delta \sim \mathrm{B}_{\mathrm{y}}$

GEM hit residuals in mag. Field 0.79 T

GEM hit residuals for exp. data.

GEM hit residuals for MC simulation with Garfield parametrization.

Mag. field 0.79 T
Gas mixture $\mathrm{Ar}+$ Isobuthan

Momentum resolution: Exp. vs MC

\checkmark Momentum resolution for deuteron beam of 9.7 GeV/c ~9\%.
\checkmark Momentum resolution for proton spectators with momentum of $4.85 \mathrm{GeV} \sim 6 \%$.

\checkmark Momentum resolution from MC as function of particle momentum.
\checkmark MC results reproduce exp. data for spectator protons and deuteron beam.

Primary vertex reconstruction

\checkmark Width of reconstructed vertex distribution along beam direction in data is reproduced in MC simulation.
\checkmark Longer tails in data distribution are due to pile-up events.

Pile-up effect in Run 5

\checkmark Event pile-up due to non-uniform time structure of deutron beam.
\checkmark Cut on total momentum of particles in event $<7 \mathrm{GeV} /$ c reduces pile-up significantly.

Deuteron \& carbon beam structure

Run 5 (Dec-2016).
Deuteron beam trigger.

Run 6 (Mar-2017)
CA collisions. N barrel $>=3$.

Λ reconstruction $\left(\mathrm{d}+\mathrm{Cu}, \mathrm{C}, \mathrm{CH}_{2}\right)$

Signal event topology defined selection criteria:
\checkmark relatively large distance of closest approach (DCA) to primary vertex of decay products \checkmark small track-to-track separation in decay vertex \checkmark relatively large decay length of mother particle
Λ signal width of 3 MeV and background level is reproduced by MC simulation.

Event topology:

$$
\begin{array}{lll}
\checkmark & \text { PV } & \text { - primary vertex } \\
\checkmark & \mathrm{V}_{0} & \text { - vertex of hyperon decay } \\
\checkmark & \text { dca } & \text { - distance of the closest approach } \\
\checkmark & \text { path }
\end{array}
$$

Summary and next plans

\checkmark BM@N experiment is in starting phase of its operation and has recorded first experimental data with deuteron beam of 4 AGeV .
\checkmark Minimum bias interactions of deuteron beam with different targets were analyzed with aim to reconstruct tracks, primary and secondary vertexes using central GEM tracking detectors.
\checkmark Spatial, momentum and primary vertex resolution of GEM tracker are reproduced by Monte Carlo simulation.
\checkmark Signal of Λ-hyperon is reconstructed in proton-pion invariant mass spectrum.
\checkmark To improve vertex and momentum resolution and reduce background under Λ-hyperon signal, additional planes of GEM detectors and a set of silicon detectors in front of GEM tracking detectors will be implemented.
\checkmark BM@N set-up will extend continuously to adapt its performance for measurements of interactions of heavier ion beams with targets.

Thank you for attention!

Backup slides

Data set (Run 6)

Magnetic field: 1200 A (0.59 T)
Gas in GEM: $\mathrm{Ar}+\mathrm{CO}_{2}$
Beam / Target: C / Cu (2205k events), $\quad E_{k i n}=4.5 \mathrm{AGeV}$
Beam / Target: C / C (2050k events), $E_{\text {kin }}=4.5 \mathrm{AGeV}$
Beam / Target: C / Al (1730k events), $E_{\text {kin }}=4.5 \mathrm{AGeV}$
Gas in GEM: Ar+Isobuthan
Beam / Target: C / C (2028 k events), $\quad E_{\text {kin }}=4.5 \mathrm{AGeV}$
Beam / Target: C / Al (2163k events), $\quad E_{\text {kin }}=4.5 \mathrm{AGeV}$
GEM position from target: $51-86-116-151-181-216 \mathrm{~cm}$

Forward silicon strip detector

Si-GEM residuals (cm) vs strip number

Silicon detector group, N.Zamiatin
misalignment

\checkmark 2-coordinate Si detector X-X' $\left(\pm 2.5^{\circ}\right)$ with strip pitch of $95 / 103 \mu \mathrm{~m}$, full size of $25 \times 25 \mathrm{~cm}^{2}, 10240$ strips \checkmark Detector combined from 4 sub-detectors arranged around beam, each sub-detector consists of 4 Si modules of $6.3 \times 6.3 \mathrm{~cm}^{2}$
\checkmark One plane installed in front of GEM tracker and operated in March 2017

Hits in silicon detector

Residuals in silicon detector

Modules 2,3,4

Modules 6,7,8

Residuals in silicon detector

Primary Vertex reconstruction

