# Theoretical Chemistry in Support of Experiment

### V. Pershina

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany





Chemical separation is relatively slow technique – now SHE isotopes with  $T_{1/2} < 1$  s can be studied

# **Relativistic Effects on Atomic Orbitals**

$$m = m_0 / \sqrt{(1 - (v/c)^2)^2}$$

$$a_0 = 4\pi\varepsilon_0\hbar^2 / me^2$$

- contraction and stabilization of s<sub>1/2</sub> and p<sub>1/2</sub> orbitals
- expansion and destabilization of  $p_{3/2}$  and  $d_{3/2}$

 $d_{5/2}$  orbitals



• SO splitting of p, d, f orbitals:  $j = l \pm s$ 

scale as ~  $Z^2$ 





### DF and Nonrelativistic Energies of Valence AOs (in eV)



[DF: Desclaux, At. Dat. Nucl. Dat. Tables (1973)]

### DF and Nonrelativistic Energies of Valence AOs (in eV)



[DF: Desclaux, At. Dat. Nucl. Dat. Tables (1973); DC CC: Eliav, Borschevsky, Pershina, et al.]

# Gas-Phase Chromatography Experiments on SHEs



Theoretical Studies of Properties and Volatility of Hg/Cn, Tl/Nh, Pb/Fl and Bi/Mc

 Formation of MO, MO<sub>2</sub> and M(OH) in the atmosphere of O<sub>2</sub>, H<sub>2</sub>O and H<sub>2</sub>

- reaction energies

- properties of atoms/molecules (geom., IP,  $\alpha$ ,  $\mu$ )
- Predictions of adsorption properties of M, MO, M(OH) on surfaces of quartz and gold
  - structures
  - adsorption energies
  - analysis of bonding

# Methods and Softwares – Molecular Codes

- Molecular
  - ADF (SCM)
    - 2c-DFT; SR and SO relativity; all-electron; various  $E^{xc}$ ; STO basis sets for SHEs
    - energy, properties, fast geometry optimization
    - commercial & host-locked
  - DIRAC
    - 2c/4c-DFT + CC ab-initio; all electron, Gaussian orbitals; poor geometry optimization, free-of-charge
- Solid state periodic
  - SCM BAND
    - 2c-SR and SO relativity, all electron, fast geometry optimization, full relaxation, dispersion-corrected Exc, commercial & host-locked

# Reaction Energies (in eV) of Gas-Phase Molecules



9

# **Calculations of Adsorption Energy**

Adatom-slab model (inert surface)

$$E(x) = -\frac{3}{16} \left(\frac{\varepsilon - 1}{\varepsilon + 2}\right) \frac{\alpha_{mol}}{\left(\frac{1}{IP_{slab}} + \frac{1}{IP_{mol}}\right) x^3}$$

### • Cluster model

(2c/4c-molecular DFT + CC codes, convergence with the cluster size no relaxation, good for atoms)

 Periodic (2c-DFT) calculations (slabs, supercells, relaxation, molecules. periodic boundary conditions)





# Predictions of SHE Delivery to Chemical Setup

Adatom-slab model:

$$E(x) = -\frac{3}{16} \left( \frac{\varepsilon - 1}{\varepsilon + 2} \right) \frac{\alpha_{at}}{\left( \frac{1}{IP_{slab}} + \frac{1}{IP_{at}} \right) x^3}$$





Calculated Properties of FI (7s<sup>2</sup>7p<sup>2</sup>) and 120 (8s<sup>2</sup>) atoms and  $\Delta H_{ads}$  on Teflon (DC CCSD(T))

| Element | α,    | IP,   | R <sub>vdW</sub> | $\Delta H_{ads}$ , |
|---------|-------|-------|------------------|--------------------|
|         | a.u.  | eV    | Å                | kJ/mol             |
| FI      | 29.5  | 8.539 | 3.94             | 10.4               |
| 120     | 162.6 | 5.851 | 2.29             | 35.4               |
|         |       |       |                  |                    |

$$\frac{N}{N_0} = e^{-\lambda t} = e^{-\frac{\ln 2}{T_{1/2}}} t_R$$

$$t_R = \frac{la_l}{Q} \frac{u}{4} \tau_0 e^{-\frac{E}{k^B T_C}}$$

E120:  $t_{1/2}$ =1 s;  $T_{C}$ =25 °C; l = 1m, Q = 1 l/min

 $N/N_0 = 77 \%$ 

EA(120) = 0.021 eV

[Pershina, et al. JCP 2008, Borschevsky, et al. PRA, 2013]

# Calculations of MO Properties and Predictions of $\Delta H_{ads}$ on Teflon (DIRAC)

A model for molecule-slab long-range interactions



A. Kotov, V. Shabaev, et al. Chem. Phys. Chem., submitted

# Modeling of Gold and Quartz Surfaces



# Calculations of $E_{ads}$ of M on Au(111) and Quartz Surfaces

 $E_{\text{ads}} = - (E_{\text{f}}[\text{M-Au}_{\text{sc}}] - E_{\text{f}}(\text{M}) - E_{\text{f}}[\text{Au}_{\text{sc}}])$ 



### Calculations of $E_{ads}$ of Group 12-15 Elements on Gold and Quartz



V. Pershina. M. Ilias, A. Yakushev, Inorg. Chem. 60, 9796 (2021) A. Yakushev: experiment on Nh and Mc, to be published

M/Gold



FI

14

15

16

Cn

12

13

-30,00

-80,00

11

### Adsorption of SHEs on the Au(111) Surface







#### [L. Trombach et al., PCCP 21,18048 (2019)]

| - $\Delta H_{ads}$ | - $\Delta H_{ads}$ on gold, kJ/mol |          |  |  |  |
|--------------------|------------------------------------|----------|--|--|--|
| Element            | theory                             | exp.     |  |  |  |
| Cn                 | 45                                 | 52       |  |  |  |
| Nh                 | 159                                | -        |  |  |  |
| FI                 | 68                                 | 35, > 52 |  |  |  |
| Мс                 | 217                                | -        |  |  |  |
| Lv                 | 190                                | -        |  |  |  |
| Ts                 | 161                                | -        |  |  |  |
| Og                 | 78                                 | -        |  |  |  |
|                    | 70 (Tr)                            |          |  |  |  |

[V. Pershina, et al. JCP 2010]

[A. Rhyzhkov, V. Pershina, et al., PCCP, 2023]

## Adsorption of SHEs on the Au(111) Surface



Only Cn, Og and Fl can me measured



| [L. Tr | ombach e | et al., | PCCP | 21,18048 | 3 (2019)] |
|--------|----------|---------|------|----------|-----------|
|--------|----------|---------|------|----------|-----------|

| $-\Delta H_{ads}$ | - $\Delta H_{ads}$ on gold, kJ/mol |          |  |  |  |
|-------------------|------------------------------------|----------|--|--|--|
| Element           | theory                             | exp.     |  |  |  |
| Cn                | 45                                 | 52       |  |  |  |
| Nh                | 159                                | -        |  |  |  |
| FI                | 68                                 | 35, > 52 |  |  |  |
| Мс                | 217                                | -        |  |  |  |
| Lv                | 190                                | -        |  |  |  |
| Ts                | 161                                | -        |  |  |  |
| Og                | 78                                 | -        |  |  |  |
|                   | 70 (Tr)                            |          |  |  |  |

[V. Pershina, et al. JCP 2010]

[A. Rhyzkov, V. Pershina, et al. PCCP, 2023]

### Adsorption of At, AtH and AtOH on the Au(111) Surface: Comparison of Periodic vs Cluster Approach



 $E_{ads}$ (kJ/mol) 130 ± 10



### $E_{ads}$ (in kJ/mol) of M, MH and MOH on the Au(111) Surface

Μ



|      | 6 <sup>th</sup> row |      | 7 <sup>th</sup> row |
|------|---------------------|------|---------------------|
| Atom | SO                  | Atom | SO                  |
| Bi   | 280                 | Мс   | 204                 |
| Po   | 259                 | Lv   | 240                 |
| At   | 184                 | Ts   | 203                 |
| Rn   | 45                  | Og   | 78                  |



242

OgH

274

MOH



|   |                  | 6 <sup>th</sup> row |          | 7 <sup>th</sup> row |
|---|------------------|---------------------|----------|---------------------|
| ١ | <i>l</i> olecule | SO                  | Molecule | SO                  |
|   | AtOH             | 185                 | TsOH     | 193                 |
|   | RnOH             | 190                 | OgOH     | 179                 |

|                | Gr 15: | Bi > Mc              | BiH > McH              |             |
|----------------|--------|----------------------|------------------------|-------------|
|                | Gr 16: | Po > Lv              | PoH > LvH              |             |
| Trend reversal | Gr 17: | At < Ts              | AtH < TsH              | AtOH < TsOH |
|                | Gr 18: | Rn < <mark>Og</mark> | RnH < <mark>OgH</mark> | RnOH > OgOH |

**RnH** 

# $E_{ads}$ (in kJ/mol) of M, MH and MOH on Gold

Μ

MH

#### MOH



A. Rhyzhkov, V. Pershina, M. Ilias, V Shabaev, PCCP, 2023

# $E_{ads}(M/MO)$ (in eV) on Au(111) Surface



s<sup>2</sup>p<sup>2</sup>



# *E*<sub>ads</sub>(M/MO) on Quartz (Geminals) (in eV)

HgO/CnO



OH-SiO<sub>2</sub>-MOH

AOs







SiO<sub>2</sub> layer

Theory: desorption as PbO Pb on reactive surface PbO on stable surface

PbO/FIO





AOs

s<sup>2</sup>p<sup>2</sup>

# E<sub>ads</sub>(M/MO) on Quartz and Gold



Theory: V. Pershina and M. Ilias, Dalton Trans. 51, 7321 (2022)

Experiment: A. Yakushev, et al. Frontiers in Chemistry (2022)

### Element 118, Og, is Solid?

#### Adsorption of inert gases including element 118 on noble metal and inert surfaces from *ab initio* Dirac–Coulomb atomic calculations

V. Pershina.<sup>1,a)</sup> A. Borschevsky,<sup>2</sup> E. Eliav,<sup>2</sup> and U. Kaldor<sup>2</sup> Gesellschaft für Schwerionenforschung, D-64291 Darmstadt, Germany <sup>2</sup>School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel J. Chem. Phys. 129, 144106 (2008)







Van der Waals interaction energy

$$E(x) = -\frac{3}{16} \left(\frac{\varepsilon - 1}{\varepsilon + 2}\right) \frac{\alpha_{mol}}{\left(\frac{1}{IP_{slab}} + \frac{1}{IP_{mol}}\right) x^3} \qquad x \approx R_{vdW}$$



Yu. Oganessian Chemistry at SHE Factory, Dec. 19-20, 2022, JINR, Dubna

#### Drastic increase from Rn to Og. Why so??

# Acknowledgements

- M. Iliaš, University Banska Bystrica, Slovakia
- A. Rhyzhkov, St. Petersburg University
- Dubna JINR computing center

# Thank you!