Molecular properties of monoxides, hydrides, and oxyhydrides of superheavy elements

Artem Kotov, Yu. S. Kozhedub, D. A. Glazov, V. M. Shabaev SPbU, Russia

> V. Pershina, GSI, Germany M. Iliaš, Matej Bel University, Slovakia

supported by Ministry of Science and Higher Education of the Russian Federation Grant Calculations are carried out at LIT JINR

April 26 2023

Introduction

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 Pnictogens	16 Chalcogens	17 Halogens	18
1	1 H Hydrogen -1 1	2 He Helium																
2	3 Li Lithium 1	4 Be Beryllium 2											5 B Boron 3	6 C Carbon -4 4	7 N Nitrogen -3 3 5	8 O Oxygen -2	9 F Fluorine -1	10 Ne Neon
3	11 Na Sodium 1	12 Mg Magnesium 2											13 Al Aluminium 3	14 Si Silicon -4 4	15 P Phosphorus -3 3 5	16 S Sulfur -2 2 4 6	17 Cl Chlorine -1 1 3 5 7	18 Ar Argon
4	19 K Potassium 1	20 Ca Calcium 2	21 Sc Scandium 3	22 Ti ^{Titanium} 4	23 V Vanadium 5	24 Cr Chromium 3 6	25 Mn Manganese 247	26 Fe Iron 2 3	27 Co Cobalt 2 3	28 Ni Nickel 2	29 Cu Copper 2	30 Zn Zinc 2	31 Ga Gallium 3	32 Ge Germanium -4 2 4	33 As Arsenic -3 3 5	34 Se Selenium -2 2 4 6	35 Br Bromine -1 1 3 5	36 Kr Krypton 2
5	37 Rb Rubidium 1	38 Sr Strontium 2	39 Y Yttrium 3	40 Zr Zirconium 4	41 Nb Niobium 5	42 Mo Molybdenum 4 6	43 Tc Technetium 4 7	44 Ru Ruthenium 3 4	45 Rh Rhodium 3	46 Pd Palladium 2 4	47 Ag Silver 1	48 Cd Cadmium 2	49 In Indium 3	50 Sn Tin -4 2 4	51 Sb Antimony -3 3 5	52 Te Tellurium -2 2 4 6	53 Iodine -1 1 3 5 7	54 Xe Xenon 2 4 6
6	55 Cs Caesium 1	56 Ba Barium 2	57–71	72 Hf ^{Hafnium} 4	73 Ta Tantalum 5	74 W Tungsten 46	75 Re Rhenium 4	76 Os Osmium 4	77 Ir Iridium 3 4	78 Pt Platinum 2 4	79 Au Gold 3	80 Hg Mercury 1 2	81 Tl Thallium 1 3	82 Pb Lead 2 4	83 Bi Bismuth 3	84 Po Polonium -2 2 4	85 At Astatine -1 1	86 Rn Radon 2
7	87 Fr Francium 1	88 Ra Radium 2	89–103	104 Rf Rutherfordium 4	105 Db Dubnium 5	106 Sg Seaborgium 6	107 Bh Bohrium 7	108 Hs Hassium 8	109 Mt Meitnerium	110 Ds Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Nh Nihonium	114 Fl Flerovium	115 Mc Moscovium	116 LV Livermorium	117 Ts Tennessine	118 Og Oganesson
			6	57 La Lanthanum 3	58 Ce Cerium 3 4	59 Pr Praseodymium 3	60 Nd Neodymium 3	61 Pm Promethium 3	62 Sm Samarium 3	63 Eu Europium 2 3	64 Gd Gadolinium 3	65 Tb Terbium 3	66 Dy Dysprosium 3	67 Ho Holmium 3	68 Er Erbium 3	69 Tm Thulium 3	70 Yb Ytterbium 3	71 Lu Lutetium 3
			7	89 Ac Actinium	90 Th Thorium 4	91 Pa Protactinium 5	92 U Uranium 6	93 Np Neptunium 5	94 Pu Plutonium 4	95 Am Americium 3	96 Cm ^{Curium} 3	97 Bk Berkelium 3	98 Cf Californium 3	99 Es Einsteinium	100 Fm Fermium 3	101 Md Mendelevium 3	102 No Nobelium	103 Lr Lawrencium 3

2/13

Chemical properties

- Formation energies of MO, MO₂, M(OH)
- Molecular properties of MO, MH, MOH:
 - o geometry, R
 - Ionization potential, IP
 - ο dipole moment, μ
 - \circ polarizability, α
 - dissociation energy
- Adsorption properties of MO, MH, MOH:
 - Teflon
 - Quartz
 - Gold
- DFT: ADF BAND
- $E_{ads}(\mu, \alpha, IP_{mol}, IP_{surf}, \epsilon, x)$

Formation of HgO, CnO и FIO

• Hg			
0	Hg + 0_2 = HgO + O	\Rightarrow E = 5.322	eV
0	Hg + 0_2^- = Hg00	\Rightarrow E = 0.014	еV
0	Hg + 0 = HgO	⇒ E = -0.618	eV
• Cn			
0	$Cn + 0_{2} = Cn00$	\Rightarrow E = 0.005	ō eV
0	Cn + 0 = Cn0	⇒ E = -0.733	eV
• Fl			
0	$Fl + 0_2 = Fl0 + 0$	⇒ E = 3.993	8 eV
0	$F1 + 0_2 = F100$	\Rightarrow E = -0.044	eV
0	$F1 + 0_2 = 0F10$	\Rightarrow E = -0.003	8 eV
0	F1 + 0 = F10	⇒ E = -1.947	eV
0	$Fl + 0_3 = Fl0 + 0_2$	\Rightarrow E = -0.348	8 eV

V. Pershina и M. Iliaš, TASCA 2022

Coupled-cluster approach

$$\Psi_{CC} = (1 + T_1 + \frac{1}{2}T_1^2 + T_2 + \frac{1}{3!}T_1^3 + T_1T_2 + T_3 + \dots)\Phi$$

- Approximations:
 - eXact 2-Component vs. Dirac-Coulomb Hamiltonians
 - relativistic effects
- Quality of the basis functions
 - completeness
 - diffuse functions
 - higher orbital momentum
- Size of the correlation space
 - o number of electrons and virtual orbitals accounted in the CC procedure
- Order of excitations
 - fully accounted Single and Double
 - Triples via perturbation theory (T)
 - and beyond: A. V. Oleynichenko, A. Zaitsevskii, E. Eliav, Towards High Performance Relativistic Electronic Structure Modelling: The EXP-T Program Package. Commun. Comp. Inf. Sci. 1331, 375-386 (2020) github.com/aoleynichenko/EXP-T

Geometry of FIO, CnO, and HgO

Ionization potential (IP)

Contrib.	Value
X2C vs. DC	+0.01 (0.1%)
relativity	-0.0084 (0.09%)
3-excitations	±0.098 (1%)
geometry	±0.024 (0.3%)
diffuse functions	±0.0005 (0.005%)
correlation space	±0.0002 (0.002%)

Dipole moment µ

Contrib.	Value		
X2C vs. DC	-0.016 (0.4%)		
relativity	-0.014 (0.3%)		
(3+)-excitations	±0.05 (1.2%)		
geometry	±0.036 (0.9%)		
<i>gh</i> orbitals	±0.088 (2.2%)		
diffuse functions	±0.018 (0.4%)		
correlation space	±0.009 (0.2%)		

Polarizability α_{aver} , a.e. Ţ DFTs Contrib. Value CCSD(T) X2C vs. DC -0.11 (0.2%) 46 +0.12 (0.2%) relativity 44 ± 0.52 (0.9%) (3+)-excitations а_{ver}, а.u. 5 ±0.58 (1%) geometry ±0.33 gh 40 (0.6%) orbitals diffuse functions ± 0.04 (0.07%)38 ± 0.3 correlation space (0.5%) HgO CnO FIO

Adsorption energy on Teflon

parallelperpendicular

The low $E_{ads}(MO)$ values should guarantee delivery of the molecules from the recoil chamber to the chemistry setup.

Geometry of oxyhydrides from 17th and 18th groups

Conclusion

- Ab-initio calculations of molecular properties of SHEs with oxygen and hydrogen within CCSD(T) approach:
 - The bond lengths of HgO and CnO are quite similar,
 - Dipole moment of FIO is more similar to HgO than CnO's is.
- Low value of E_{ads} with Teflon for oxydes should guarantee delivery of the molecules from the recoil chamber to the chemistry setup
- Evaluation of the reliability of the DFT application in comparison with the strong baseline calculation via CCSD(T).
 - For the geometry calculation DFT works well,
 - For properties (especially IP) DFT may yield erroneous values.
- Large deviation in the geometry of the hydrides of the 18th group between DFT and CCSD(T).

Many thanks to the LIT JINR for their comprehensive assistance in carrying out calculations on the GOVORUN supercomputer.

Geometry R [Å] of FIO, CnO, and HgO

Molecule	DFT	CCSD(T)
HgO	1.88-1.91	1.905(14)
CnO	1.85-1.88	1.887(14)
FIO	2.04-2.07	2.064(14)

Contrib.	X2C vs. DC	relativity	(3+)-excitations	<i>gh</i> orbitals	diffuse functions	correlation space
Value	-0.00028	-0.00023	±0.013	±0.0054	±0.0015	±0.00091
	(0.01%)	(0.01%)	(0.6%)	(0.3%)	(0.07%)	(0.04%)

Contributions and uncertainties for FIO

Ionization potential (IP), eV

Molecule	DFT	FS-CCSD
HgO	10.4-10.9	9.76(10)
CnO	10.7-11.5	10.38(10)
FIO	9.9-10.6	9.76(10)

Contrib.	X2C vs. DC	relativity	(3+)-excitations	geometry	diffuse functions	correlation space
Value	+0.01	-0.0084	±0.098	±0.024	±0.0005	±0.0002
	(0.1%)	(0.09%)	(1%)	(0.3%)	(0.005%)	(0.002%)

Dipole moment µ, Debye

Molecule	DFT	CCSD(T)
HgO	4.27-4.64	4.11(10)
CnO	2.63-2.85	2.45(6)
FIO	4.38-4.44	4.09(10)

Contrib.	X2C vs. DC	relativity	(3+)-excitations	geometry	<i>gh</i> orbitals	diffuse functions	correlation space
Value	-0.016	-0.014	±0.05	±0.036	±0.088	±0.018	±0.009
	(0.4%)	(0.3%)	(1.2%)	(0.9%)	(2.2%)	(0.4%)	(0.2%)

Polarizability α_{aver} , a.e.

Molecule	DFT	CCSD(T)
HgO	41.8-42.5	45.3(10)
CnO	37.3-37.6	37.5(9)
FIO	38.7-41.5	40.4(9)

Contrib.	X2C vs. DC	relativity	(3+)-excitations	geometry	<i>gh</i> orbitals	diffuse functions	correlation space
Value	-0.11	+0.12	±0.52	±0.58	±0.33	±0.04	±0.3
	(0.2%)	(0.2%)	(0.9%)	(1%)	(0.6%)	(0.07%)	(0.5%)

Adsorption energy on Teflon

Molecule	R, Å	d _{par} , Å	d _{per} , Å	μ _z , D	IP, eV	<a>, a.e.	a _{xx} , a.e.	a _{zz} , a.e.	E _{ads} ^(par) , kJ/mol	E _{ads} ^(per) , kJ/mol
HgO	1.905	2.27	3.103	4.109	9.76	45.31	33.9	68.13	9.94	18.2
CnO	1.887	2.252	3.076	2.451	10.38	37.45	30.08	52.19	9.32	10.2
FIO	2.064	2.429	3.341	4.086	9.76	40.36	31.09	58.9	7.44	13.6

The low $E_{ads}(MO)$ values should guarantee delivery of the molecules from the recoil chamber to the chemistry setup.

Polarizability α [a.e.] of FIO, CnO, and HgO

			DFT			Contrib.	Value	
Molecule	component	B3LYP	PBE0	BP86	CCSD(T)	X2C vs. DC	-0.11 (0.2%)	
HgO	α _{xx}	33.6	33.5	34.2	33.9(10)			
	α _{zz}	59.2	60.4	57.1	68.1(10)	relativity	+0.12 (0.2%)	
	α _{aver}	42.1	42.5	41.8	45.3(10)	(3+)-excitations	±0.52 (0.9%)	
CnO	α _{xx}	30.9	30.5	31.6	30.1(9)			
	α _{zz}	51.1	51.1	50.8	52.2(9)	geometry	±0.58 (1%)	
	α _{aver}	37.6	37.4	37.3	37.5(9)	gh orbitals	±0.33 (0.6%)	
FIO	α _{xx}	30.2	29.5	32.0	31.1(9)			
	α _{zz}	58.1	57.1	60.4	58.9(9)	diffuse functions	±0.04 (0.07%)	
	α _{aver}	39.5	38.7	40.4(9)	correlation	±0.3		
						space	(0.5%) 19/13	