The first physics results of the BM@N experiment

Sergei Merts

on behalf of the BM@N collaboration 27/04/2023

- Physics motivation for the BM@N experiment
- Experimental setup during the first heavy ion run
- First experimental results
- Conclusion

BM@N - Baryonic Matter at Nuclotron

There was carried 8 runs. But most recent and interested were in 2017 (C + X), 2018 (Ar + X) and 2022-2023 (Xe + Scl)

Experiment is people!

3 countries, 10 institutions and 188 participants

- University of Plovdiv, Plovdiv, Bulgaria
- Saint Petersburg State University, St.Petersburg, Russia
- Joint Institute for Nuclear Research, Dubna, Russia
- Institute of Nuclear Research of RAS, Moscow, Russia
- Shanghai Institute of Nuclear and Applied Physics, Shanghai, China
- NRC Kurchatov Institute, Moscow, Russia
- Moscow Engineer and Physics Institute, Moscow, Russia
- Skobeltsin Institute of Nuclear Physics, Moscow, Russia
- Moscow Institute of Physics and Technics, Moscow, Russia
- Lebedev Physics Institute of RAS, Moscow, Russia

Physics motivation for the BM@N experiment

BM@N Heavy ion collision experiments

Experiments at the NICA complex:

- BM@N, $\sqrt{s_{NN}} = 2.3 3.3 \text{ GeV}$
- MPD, $\sqrt{s_{NN}} = 4 11 \text{ GeV}$

BM@N competitors:

- HADES BES (SIS) Au+Au, $\sqrt{s_{NN}} = 2.42 \text{ GeV}$
- STAR BES (RHIC) Au+Au, $\sqrt{s_{NN}} = 3 200 \text{ GeV}$ (10⁹ events at 3 GeV in 2021)
- Future CBM experiment Au+Au, $\sqrt{s_{NN}} = 2.7 4.9 \text{ GeV}$

Goal of the BM@N experiment

BM@N

Study symmetric matter EOS at $\rho/\rho_0 = 3 - 5$, $\rho_0 = 0.16$ fm⁻¹:

- elliptic flow of protons, mesons and hyperons
- sub-threshold production of strange mesons and hyperons
- extract nuclear incompressibility (Knm) from data to model predictions

EoS: relation between density, pressure, temperature, energy and isospin asymmetry $E_A(\rho, \delta) = E_A(\rho, 0) + E_{sym}(\rho) \cdot \delta^2 \delta = (\rho_n - \rho_\rho)/\rho$

Nuclear incompressibility: $K_{nm} = 9\rho^2 \frac{\partial^2}{\partial \rho^2} (E/A)|_{\rho=\rho_0}$

S. Merts

Constrain symmetry energy E_{sym}:

- elliptic flow of neutrons vs protons
- sub-threshold production of particles with opposite isospin

Comparison HADES, STAR FxT, BM@N

Εχρ.	year	A+A	E _{kin} AGeV	Statistics	Ξ	Ω^{-}	Hypernuclei
HADES	2012	Au+Au	1.23	$7 \cdot 10^9$	×	×	×
HADES	2019	Ag+Ag	1.58	$1.4 \cdot 10^{10}$	×	×	$800 \frac{3}{\Lambda} H$
STAR FxT	2018	Au+Au	2.9	$3 \cdot 10^{8}$	10^{4}	×	$10^{4} \frac{3}{\Lambda} H$
							$6\cdot10^3 \frac{4}{\Lambda}H$
STAR F×T	2021	Au+Au	2.9	$2 \cdot 10^{9}$	$7 \cdot 10^4$	×	$7 \cdot 10^4 \frac{3}{\Lambda} H$
							$4 \cdot 10^4 \frac{4}{\Lambda} H$
BM@N	sim.	Au+Au	3.8	$2 \cdot 10^{10}$	$5 \cdot 10^{6}$	10^{5}	$10^{6} \frac{3}{\Lambda} H$
full							⁴ A, ⁵ He
program							7 Li, 7 He
							$10^2 \frac{5}{\Lambda\Lambda}$ H

- ${f O}\,$ Reaction rates: HADES \approx 20 kHz, BM@N \approx 20 kHz, STAR FxT \approx 2 kHz
- ${\small lacepsilon}$ HADES and BM@N are complementary, no cascade hyperons (2–, Ω^-) at HADES
- ${\small \bigcirc}~$ Statistics at BM@N ${\approx}70$ times higher (Ξ^-) than at STAR FxT

S. Merts

Experimental setup in the first heavy ion run

BM@N Beam pipe

Total length of the vacuum ion beam pipe from Nuclotron to BM@N is about 160 m.

- Beam pipe in te SP-41 magnet is made of 1 mm thick carbon fiber;
- It consists of four parts with a non-flange connectors;
- FLUKA simulations have shown that the proposed beam pipe is well suited to guide the high intensity beam;
- First vacuum tests have shown an insignificant leakage level of side surfaces of the sample, vacuum up to 10⁻⁵ Torr.

Magnetic field measurement

- New magnetic field measurements were done
- The region of measurements is much larger than for the old field map
- "Boltometry"approach was used to align measured grid in the BM@N coordinate system

BM@N

Silicon Beam Tracker

BM@N

Three silicon beam trackers with 32x32 orthogonal strips readout

- oplaced in beam pipe in 100 cm from each other
- rotated relative to each other by 30 degrees.

Main goals:

- ${\ensuremath{\, \odot}}$ ${\ensuremath{\, \rm To}}$ improve vertex resolution in transverse direction
- To monitor beam behavior during experimental run
- To reconstruct beam angles

Experimental efficiensies: 95,7%, 88.7%, 93.5%

Trigger detectors to be used in 2022:

- T0 start signal for DAQ
- VC, BC beam trigger formation
- BD barrel detector for counting particles under high polar angle
- SiMD silicon multiplicity detector for counting particles under small polar angles
- FD fragment detector for vetoing non-interaction events and generating trigger for central and semi-central events

BM@N

Inner tracking system

Inner tracking system consist of

- 4 forward silicon detectors
- 7 GEM stations (160 × 80cm²)
- Right after the target four stations of Silicon Forward Detector was installed
- Seven GEM stations covers the entire magnet aperture

BM@N Outer tracking system

Outer planes support tracks in downstream direction

- ${\hfill}$ Four small Cathod Strip Chambers (SmallCSC, $\approx 1 \times 1m^2$) placed around near Time-of-Flight (TOF-400)
- $\bullet~$ Large Cathod Strip Chamber (LargeCSC, $\approx 1.5 \times 2 m^2$) placed in front of far Time-of-Flight (TOF-700)
- Two Drift Chamders (DCH) placed around far Time-of-Flight (TOF-700)
- ${\hfill}$ One small GEM ($\approx 10\times 10 \text{cm}^2$) was installed after the outer tracking detectors crossing beam trajectory

Calorimeters

BM@N

Forward Hadron Calorimeter

- 20 PSD CBM modules transverse size $20x20 \text{ cm}^2$
- 34 MPD/NICA like modules transverse size $15x15 \text{ cm}^2$

Scintillation Wall

 registration of fragments in the ScWall allows to measure fragments multiplicities to tune parameters in fragmentation models

Hodoscope

- measurement of fragments charge in the FHCal beam hole
- 16 quartz strips with sizes $10 \times 160 \times 4 \text{ mm}^3$
- covers beam hole $15 \times 15 \text{ cm}^2$

Main goals of the system:

- Centrality determination
- Reaction plane calculation

Collected data during Xe run

It was two energies of Xe beam:

- \odot 507 \cdot 10⁶ events at 3.8 A GeV
- $48 \cdot 10^6$ events at 3.0 A GeV

S. Merts

Current studies of experimental data

Particles and fragments identification

Main goal: yields of charged particles and fragments extraction

BM@N

Current studies include

- Positive and negative particles separation by TOF systems
- Attempt to separate deuteron and Helium-4 by dE/dx in GEM

Analysis of Λ^0 yields for data 2018

Ar+A @ 3.2 AGeV

BM@N

 Λ⁰ mass resolution is about 3.3MeV/c²

Finalization of Λ^0 analysis for data 2017

- C+A @ 4 AGeV
- Λ^0 mass resolution is $2.4-3.0 \mbox{MeV/c}^2$
- Statistics: CC(4.6M), CAl(5.3M), CCu(5.3M)

Lambda data comparison

BM@N

22/24

- BM@N already recorded experimental data from a set of technical runs (carbon, argon-krypton). Physics analysis of data is in its active phase, results expected to be published in the nearest future.
- The longest and successful experimental run with heavy ions was held in 2022-2023.
- Physics analysis of charge particles, hyperons and hypernuclei production, flows etc. for new Xe data is ongoing.

BM@N

Conclusion

Thank you!