

Cyclotron DC-280 of Super Heavy Elements factory

MARSHATER

A DEGREEN S

经营造法通知法

Vasiliy Semin

Scientific and Technical accelerator department FLEROV LABORATORY of NUCLEAR REACTIONS, Joint Institute for Nuclear Research, Dubna, Russia

seminva@jinr.ru

Accelerated complex FLNR

Technical parameters	DC-280	U-400	U-400M	IC-100
magnetic poles diameter [m]	4.0	4.0	4.0	1.05
Magnetic induction [T]	0.6÷1.3 T	1.95÷ 2.15	1.5 ÷1.95	1.78 -1.93
Weight of magnet [T]	1100	2000	2300	50
Injection potential [kV]	Up 90	Up 25	Up 25	Up 25
N sectors/ angle	$4/28 \rightarrow 42^{\circ}$	4/42°	4/42°; Spiral 43°	4/56°
N dee	2	2	4	2
Dee voltage [kV]	Up 110	Up 100	Up 170	Up 55
Frequency [MHz]	7.3÷ 10.4	5.5÷12	11.5÷ 24	19.8 - 20.6
Harmonic	3	2	2;4	4
A/Z	4 ÷ 7.5	5 ÷ 12	7-10; 2,5-6	5.5 - 5.95
Extraction type	Electrostatic Deflector	Recharge foil, Two direction	Recharge foil, Two direction	Electrostatic Deflector
Ion energy MeV/nucleon	4÷8	0.5 ÷20	4-11; 15-60	1.05-1.2

Accelerated complex FLNR

Cyclotron DC-280

Year	Total work time	lons
2018	First Beam	⁸⁴ Kr
2019	3377	¹² C, ⁴⁰ Ar, ⁴⁸ Ca, ⁸⁴ Kr
2020	3705	⁴⁰ Ar, ⁴⁸ Ca, ⁴⁸ Ti
2021	5357	⁴⁸ Ca, ⁴⁸ Ti , ⁵² Cr
2022	6037	⁴⁰ Ar, ⁴⁸ Ca, ⁴⁸ Ti , ⁵² Cr

Main parameters of the DC-280

parameters	design	realized
Ion source	DECRIS-PM - 14 GHz	z on the HV platform (U_{max} =60kV)
Injecting beam potential	Up to 80 keV/Z	38,04 – 72,89 keV/Z
A/Z	4÷7.5	4,44 (⁴⁰ Ar ⁺⁷) – 6,86 (⁴⁸ Ca ⁺⁷)
Energy	4÷8 MeV/n	4,01 – 7 MeV/n
Ion (for DECRIS-PM)	4-136	$12 (^{12}C^{+2}) - 84 (^{84}Kr^{+14})$
Intensity (A~50)	>10 рµА	10,43 pµA (40 Ar ⁺⁷), 7,7 pµA (48 Ca ⁺¹⁰)
Magnetic field level	0.6÷1.3 T	0.8÷1.23 T
K factor		280
Dee voltage	2x130 kV	130 kV
Power of RF generator		2x30 kW
Flat-top dee voltage	2x13 kV	13 kV
Power of Flat-top generator		2x2 kW
Emittance	less than 30 π mm·mrad	
Accelerator effectivity	>50%	51,9 % (⁴⁸ Ca ⁺¹⁰ 5 MeV/n 5 pmkA)

Cyclotron DC-280

HV platform:

Work potential up 70 kV Power of equipment 75 kW

The calculated efficiency of bunching the beam into the phase region of the accelerating field \pm 20° was 80%, the losses on the grids were 8 ÷ 10%, they reduce the overall efficiency to ~ **70%**

The center of the Buncher drift tube is located at a distance of 387.5 cm from the median plane of the cyclotron.

Typical work amplitude of voltage for harmonics: 1-st: 850 V 2-nd: 600V 3-rd: 380 V

lan	I _{ECR}	Capti	ure to accelei	ration
ion	(pµA)	Off	1 harmonic	3 harmonic
⁴⁰ Ar	5.6	15%	40%	66%
⁴⁸ Ca	2.5	15%		67%
⁸⁴ Kr	3.64	12%	43%	57%
Max	desigr	n value of cap	oture	70%

Cyclotron DC-280

High intensive ⁴⁸Ca beam

Efficiency ⁴⁸Ca¹⁰⁺ beam acceleration in different phase

	Axial injection	on system	Су	clotron	Transport
	After separation (IFC2), pμA	Before injection (IFC3), pμA	R=400 mm, pμA	R=1770 mm, pμA	channel (T0FC2), pμA
	19,3	17,6	12,4	11,0	7,7
	91,59	%			
		70	,5%		_
2				88,4%	
26	2/2			70,3%	-
			40,1%		

DC280 Cyclotron

Cyclotron DC-280

Efficiency

	Efficie	ncy of a	acceleratio	on of ⁴⁸ C	a beam
Intensity (puA)	Axial injection system	Capture	Acceleration	Extraction	Total
2.1	85%	78%	97%	86%	55%
3.3	91%	68%	94%	79%	46%
3.3	91%	73%	88%	75%	44%
4.7	90%	69%	91%	91%	50%
4.8	93%	73%	92%	77%	48%
5.3	97%	74%	93%	71%	47%
6	89%	72%	91%	73%	42%
7.7	91%	71%	88%	70%	40%

Cyclotron DC-280

Stability of beam 48Ca during month of work

Yuri Oganessian. International Conference "Heaviest Nuclei and Atoms" Apr.25-30, 2023, Yerevan

Synthesis of new elements at SHE Factory

Yuri Oganessian. International Conference "Heaviest Nuclei and Atoms" Apr.25-30, 2023, Yerevan

Cyclotron DC-280

88,9%

47.5%

79.2%

-30

50

-10 50

13

14

Ti⁷⁺

JINF

Ti⁶⁺

Dubna

15

P=171W

```
Cyclotron DC-280
```

Ion DECRIS-PM spectrum produced from $(CH_3)_5C_5Ti(CH_3)_3$

Hydrogen ions flow ~ 6×10^{15} pps; Carbon ions flow ~ 1.5×10^{15} pps Helium ions flow (work with Ca) ~ $1.5 \div 3 \times 10^{15}$ pps

Screen with Ti foil after operation with SF₆ plasma

Production of high-intensity ion beams ⁴⁸Ti⁺¹⁰ at the DC-280 cyclotron

300 -

T0FC2

F3+

S5+

Ti7+

12

Bender

Ling 3

Buncher

S⁴⁺

Ti⁶⁺

13

14

Deflector

IFCI

S⁶⁺

Ti⁹⁺ Ti⁸⁻

10

C²⁺

11

lam (A)

80kV

32,704 mkA

IRP2(1

Inflector

High temperature evaporator

For refractory metals, the typical temperature to produce enough vapor (0.001-0.1 torr) in ECR ions source is 1600~2000° C.

Collaboration FLNR – IPHC (Strasburg)

INDUCTIVE OVEN

Adaptation to DECRIS-PM

JINR

Dubna

"FOIL" OVEN (GANIL type)

Beam intensities of 14 GHz, 28 GHz and 45 GHz ECR ion sources

22

Development of heavy ion injector with 28 GHz ECR ion source

Injector characteristics:

•Injection energy – up to 100 $\kappa V \times charge$

- •Beam intensity of ${}^{40}\text{Ar}{}^{12+}$ 1.2·10¹⁴ pps
- •Beam intensity of ${}^{132}Xe^{30+}$ $1.2 \cdot 10^{13}$ pps
- •Beam intensity of ${}^{48}Ca^{11+}$ $8 \cdot 10^{13}$ pps

UHF system:

- UHF system type gyrotron
- UHF frequency 28 GHz
- UHF power up to 10 kW

Superconducting magnet system:

"Warm" bore diameter = Ø 142 mm.
Plasma chamber internal diameter = Ø 124 mm.
Field peak-to-peak axial distance (B_{inj} and B_{extr}) L = 420 mm,
B_{inj} on axis B_{inj} = 4 Тл,
B_{extr} on axis B_{extr} = 2 ÷ 2,5 Тл,
Minimal axial field B_{min} = 0,5 ÷ 0,8 Тл,
Field module |B| at diameter = Ø 124 mm 2,02 Тл,

New superconductor ECR source SC-ECRIS (28 GHz) Structure

Cryostat common view

Gyrotron 28 GHz / 10 kW during bench test

JINR

Dubna

	1	134	Accel	erated	⁴⁸ Ca l	beam i	ntens	ity 🚬	~		IL
A Carlos and a car	É.S		GREEN				5	Ser X	- pro-		
4 pμA wrence la		.2 pμA ISU ichigan		0. G	7 рµА АNIL	COLOR COLOR	7.7 pμA IINR FLNR Dubna		lovož	2.4 pµ/ IMP	4
-	.DC-2	280 be	eam ir	itensit	y and	efficie	ency o	I acce	erat	1011	
lon	DC-2	280 be	Intensi	ty (pµA) Cyclc	y and	ennel sport	ency o	I acce	iciency (%	6)	
lon	DC-2 Energy (MeV)	Axial in after separation	Intensi jection before injection	ty (pμA) Cyclc R=400 mm	otron R= 1770 mm	Transport Channel	Axial injection	Eff Capture	ciciency (%	6) Extraction	Total
lon ⁴⁸ Ca ⁺¹⁰	DC-2 Energy (MeV) 240	Axial in after separation 1,2	Intensi Jection before injection 1,15	ty (pμA) Cyclo R=400 mm 0,86	y and otron R= 1770 mm 0,80	Channel 0'2	Axial injection 96%	Eff Capture 75%	iciency (% Cyclotron 93%	Extraction 67%	Total 45%
lon ⁴⁸ Ca ⁺¹⁰ ⁴⁸ Ca ⁺¹⁰⁺	DC-2 Energy (MeV) 240 240	Axial in after separation 1,2 9	Intensi jection before injection 1,15 8,1	ty (pμA) Cyclo R=400 mm 0,86 5,6	y and otron R= 1770 mm 0,80 5,1	Channel 0,5 4,7	Axial injection 96% 90%	Eff Capture 75% 69%	Cyclotron 93% 91%	Extraction 67% 91%	Total 45% 50%
lon ⁴⁸ Ca ⁺¹⁰ ⁴⁸ Ca ⁺¹⁰⁺ ⁴⁸ Ca ⁺¹⁰	DC-2 Energy (MeV) 240 240 240	Axial in after separation 1,2 9 20	Intensi Jection before injection 1,15 8,1 17,6	tensit ty (pμA) Cyclc R=400 mm 0,86 5,6 12,4	y and otron R= 1770 mm 0,80 5,1 11	Channel 2,5 4,7 7,7	Axial injection 96% 90% 87%	Eff Capture 75% 69% 70%	Cyclotron 93% 91% 88%	Extraction 67% 91% 71%	Total 45% 50% 38%
lon ⁴⁸ Ca ⁺¹⁰ ⁴⁸ Ca ⁺¹⁰⁺ ⁴⁸ Ca ⁺¹⁰ ⁴⁸ Ca ⁺¹⁰	DC-2 Energy (MeV) 240 240 240 265	Axial in after separation 1,2 9 20 4,8	Intensi Jection before injection 1,15 8,1 17,6 3,9	tensit ty (pμA) Cyclo R=400 mm 0,86 5,6 12,4 2,8	y and otron R= 1770 mm 0,80 5,1 11 2,5	erricie transport Channel 0,5 4,7 7,7 2,1	Axial injection 96% 90% 87% 81%	Eff Capture 75% 69% 70% 71%	Cyclotron 93% 91% 88% 88%	Extraction 67% 91% 71% 86%	Total 45% 50% 38% 44%
lon ⁴⁸ Ca ⁺¹⁰ ⁴⁸ Ca ⁺¹⁰⁺ ⁴⁸ Ca ⁺¹⁰ ⁴⁸ Ca ⁺¹⁰ ⁴⁸ Ti ⁺⁹ ⁴⁸ Ti ⁺¹⁰	DC-2 Energy (MeV) 240 240 240 240 265 244	Axial in after separation 1,2 9 20 4,8 13,2	Intensi Jection before injection 1,15 8,1 17,6 3,9 10,6	tensit ty (pμA) Cyclc R=400 mm 0,86 5,6 12,4 2,8 4,6	y and otron R= 1770 mm 0,80 5,1 11 2,5 4,1	erricie Lungen Lung Channel Channel Channel 7,7 2,1 3,2	Axial injection 96% 90% 87% 81% 80%	Eff Capture 75% 69% 70% 71% 43%	iciency (% Cyclotron 93% 91% 88% 88% 88%	Extraction 67% 91% 71% 86% 80%	Total 45% 50% 38% 44% 25%
lon ⁴⁸ Ca ⁺¹⁰ ⁴⁸ Ca ⁺¹⁰⁺ ⁴⁸ Ca ⁺¹⁰ ⁴⁸ Ca ⁺¹⁰ ⁴⁸ Ti ⁺⁹ ⁴⁸ Ti ⁺¹⁰ ⁵² Cr ⁺¹⁰	DC-2 Energy (MeV) 240 240 240 265 244 250	280 be Axial in after separation 1,2 9 20 4,8 13,2 6,3	Intensi jection before injection 1,15 8,1 17,6 3,9 10,6 5,2	tensit ty (pμA) Cyclo R=400 mm 0,86 5,6 12,4 2,8 4,6 3,6	y and otron R= 1770 mm 0,80 5,1 11 2,5 4,1 3,2	efficie tu ans bods ure U 0,5 4,7 7,7 2,1 3,2 2,6	Axial injection 96% 90% 87% 81% 81% 80% 83%	Eff Capture 75% 69% 70% 71% 43% 69%	iciency (% Cyclotron 93% 91% 88% 88% 88% 91%	Extraction 67% 91% 71% 86% 80% 81%	Total 45% 50% 38% 44% 25% 42%