Time-projection chamber for MPD

Stepan Vereschagin, on behalf of the TPC/MPD group, VBLHEP, JINR

Outline

٠	Nica complex, MPD experiment and TPC detector:	slides 3-4
٠	TPC cylinders and body assembling:	slides 5-7
٠	Read-Out Chambers and gating grid system :	slides 8-9
٠	Gas system:	slide 10
٠	Cooling system:	slides 11-13
٠	Laser calibration system:	slide 14
٠	Low voltage and High voltage power supply:	slide 15
٠	TPC data acquisition system:	slides 16-18
٠	TPC to MPD installation:	slide 19
٠	TPC engineering infrastructure	slide 20
٠	Time schedule:	slide 21

NICA Complex

For details on the NICA project look into the presentations: **"Mega**science challenges of the NICA project" (Vladimir Kekelidze) and **"NICA** accelerator complex" (Andrey Butenko)

> https://nica.jinr.ru/ http://mpd.jinr.ru/

TPC design requirements and main parameters

Heavy-ion collision simulation

The TPC/MPD design requirements:

- The overall acceptance: $\eta < 1.2$
- The momentum resolution for charged particles is under 3% in the transverse momentum range 0.1 < pt < 1 GeV/c
- Two-track resolution is of about 1 cm
- Hadron and lepton identification by dE/dx measurements: with a resolution better than 8%
- Operation trigger rate: 7 KHz

Item	Dimension
Length of the TPC	340cm
Outer radius of vessel	140cm
Inner radius of vessel	27 cm
Outer radius of the drift volume	133cm
Inner radius of the drift volume	34cm
Length of the drift volume	170cm (of each half)
HV electrode	Membrane at the center of the TPC
Electric field strength	~140V/cm;
Magnetic field strength	0.5 Tesla
Drift gas	90% Ar+10% Methane, Atmospheric pres. + 2 mbar
Gas amplification factor	$\sim 10^{4}$
Drift velocity	5.45 cm/μs;
Drift time	< 30µs;
Temperature stability	< 0.5°C
Number of readout chambers	24 (12 per each end-plate)
Segmentation in ϕ	30°
Pad size	5x12mm ² and 5x18mm ²
Number of pads	95232
Pad raw numbers	53
Pad numbers after zero suppression	< 10%
Maximal event rate	< 7 kHz (Lum. 10 ²⁷)
Electronics shaping time	~180 ns (FWHM)
Signal-to-noise ratio	30:1
Signal dynamical range	10 bits
Sampling rate	10 MHz
Sampling depth	310 time buckets

TPC cylinders and HV electrode

TPC body assembling

The body assembling

TPC body was assembled with test rods to check TPC geometry by laser tracker AT-402 : misalignment between 2 flanges, HV electrode and C1-C2 cylinder - is about 0.5 mm. The goal is to improve misalignment.

Read-Out Chambers (ROC)

Gating grid system

ROC gating grid system: test setup

Gas system

Gas system main features:

- Drift gas mixture: 90%Ar + 10%CH₄ (P10);
- Insulating gas: N₂;
- Operating pressure: atmospheric + 2.0 ± 0.03 mbar;
- Drift volume: 17640 liters;
- Insulating gaps volume: 2380 liters;
- Oxygen content: 20 ppm;
- Moisture content: 10 ppm;
- Recirculation rate of outer loop: 30 L/min;
- Recirculation rate of inner loop: 20 L/min

Gases consumption:

Mode	Argon, m^3	Methan, m^3	Nitrogen, m^3
TPC purging	84	5.4	36
Experiment:			
Per day	7.8	0.86	8.6
Per month	234	25.9	259

Cooling system

Cooling prototype

Serial cooling system

Laser calibration system

14

Low voltage and High voltage power supply

Low voltage distribution board. Designed in INP BSU (Minsk)

TPC data acquisition system (DAQ)

Front-End Electronics

- The total number of registration channels: 64
- Maximum input charge in a linear range: 100 fC
- ADC resolution: 10 bit
- ENC: les than 1000 e^{-}
- Readout serial interface: up to 2.5 Gbps

Noise distribution over FEC channels

FECs production status: PCBs & FECs to be ordered: 21 pc. + spare PCBs in production: 500 pc. FECs in production: 240 pc.

[1] J. Adolfsson, et al., SAMPA chip: the new 32 channels ASIC for the ALICE TPC and MCH upgrades, JINST 12 (04) (2017) C04008.

ReadOut Chamber DAQ test setup

- 1. RCU prototypes
- 2. FECs on the ROC (62 pc. left and 31 pc. right)
- 3. LV power supply
- 4. DCU card connected with RCUs via fibers
- 5. Readout server

Tooling for installation TPC to MPD

TPC engineering infrastructure

S.Vereschagin, JINR, Time-projection chamber for MPD, "Heaviest nuclei and atoms" conference, Erevan, Armenia, April 27, 2023

Time schedule

TPC assembling:

Field cage assembly:	July 2023
HV tests:	August 10 2023
TPC vessel ready (glue by epoxy):	August 30 2023
Laser beams position measurements:	Sept 2023
TPC vessel tightness measurements:	Oct 2023
24 ROC chambers installation:	Nov-Dec 2023
TPC tests: laser tracks and cosmic test:	Jan-Sept 2024
Integration TPC to MPD:	-
TPC racks (8pc) + cabling:	autumn 2023 - 2024
TPC rails (2pc manufacture and delivery):	Oct 30 2023
Rails installation to ECAL support structure	e: Nov 2023
Fooling for installation TPC to MPD:	
Design optimization + prototype 1:5:	June 2023
Tooling manufacture:	July 2023 - Feb 2024 (8 month)
Delivery to JINR:	Spring 2024
FPC+ECAL cooling systems:	
FE cooling:	Nov 2023
commissioning:	Sept 30 2024
TPC installation to MPD:	Oct 1-Nov 30 2024
MPD commissioning:	Jan 10 - Feb 2025

Thank you for your attention!