

EDELWEISS-LT Прямой поиск легких WIMP с HPGe полупроводниковыми болометрами

Основные данные об эксперименте

- 1. НРСе детекторы-болометры
- 2. Традиционные методы подавления фона:

Подземная лаборатория LSM Многослойная защита + активное вето Отбор материалов

Непрерывный контроль уровня радона Непрерывный мониторинг нейтронного потока

3. Специальные методы подавления фона

2 канала измерений: фононный и ионизационный

Отношение Е_{ionization}/Е_{recoil} =1 для электронов ≈0.3 для ядер отдачи ⇒ Возможность отобрать события – кандидаты WIMP ⇒Подавление γ-фона > 99.999%

Детекторы со специальной схемой электродов, позволяющей проводить активный отбор поверхностного фона (событий с неполным сбором заряда)

Текущая научная программа

EDELWEISS-III (2012-2018): 24 **FID800** *G*е детекторов

Улучшенное подавление фонов.

Разрешение ионизационных и фононных каналов улучшены на >30%.

Смещение интереса в область легких WIMP

EDELWEISS, текущая фаза эксперимента

Результаты, полученные экспериментом EDELWEISS после набора 500 кг. суток WIMP-nucleon cross-section σ (SI) (cm 2) 10⁻³⁸ В настоящее время больше 1500 кг. суток 10⁻³⁹ EDELWEISS II DAMA/LIBRA 10⁻⁴⁰ CRESST-2015 DMSLite2 CoGeNT-2013 10⁻⁴ XENON100 10⁻⁴² EDELWEISS 10⁻⁴³ MI 10-44 20 30 8 9 1 0 5 6 7 WIMP mass m_x(GeV/c²)

EDELWEISS-LT

 $\boldsymbol{E}_t = \boldsymbol{E}_r + \frac{1}{3 \, eV} \, \boldsymbol{E}_Q \Delta \boldsymbol{V}$

Новый метод (усиление фононного сигнала из-за эффекта Неганова-Люка) для исследования области WIMP с массой <10 ГэВ/с².

Charge/Phonon sensors

Ожидаемые результаты

План работ

Time	Task				
2017-2018	Search for source of heat only events (Building and				
	testing of HPGe crystals with different termistors,				
	holders, crystal treatments, delivery of the detectors to				
	LSM, measurements)				
2018-2019	Delivery (production) of EDELWEISS-LT detectors				
2019	Delivery of the upgrades (cryogenics, wiring,				
	electronics, internal shield)				
2019	500 kgd EDELWEISS-LT result				
2019	Decision about ultimate EDELWEISS-LT detectors				
	design				
2019-2020	Accumulation of WIMP data, improving of				
	background, preparation to 50000 kgd phase				
	(production of detector, tests, calibrations).				
2020-2021	Upgrade of EDELWEISS shield, cryogenic, start of				
	50000 kgd phase of EDELWEISS-LT				

Обязанности в EDELWEISS

Общие обязанности:

Сборка установки

Запуск

Набор данных

Проведение калибровочных измерений

MC

Анализ данных

Наша ответственность: М

Контроль радона

Измерения нейтронов

Измерения радиоактивности материалов

Эксплуатация чистой комнаты

Сертификация радиоактивных материалов

Новые детекторы (детекторы с низким энергетическим порогом) Мы участвуем:

Измерения нейтронов в совпадениях с мюонным вето

База данных

Наше оборудование в EDELWEISS

Наше оборудование в EDELWEISS

³Не детектор, поле нейтронов в LSM

Thermal neutron flux					
		Thermal neutron			
Point	Counting rate at ROI, cpd	flux, 10 ⁻⁶			
		n/cm ² /sec			
	76.8 ± 1.5	3.64 ± 0.07			
1	78.2 ± 2.3	3.72 ± 0.11			
	74.35 ± 0.6	3.54 ± 0.03			
2	97.7 ± 9.3	4.7 ± 0.5			
2	106.1 ± 7.3	5.1 ± 0.4			
	130.7 ± 12.2	6.3 ± 0.6			
3	140.3 ± 7.4	6.7 ± 0.4			
	148.2 ± 12.3	7.1 ± 0.6			
1	43.3 ± 4.0	2.1 ± 0.2			
4	59.7 ± 4.5	2.9 ± 0.2			
5	94.7 ± 9.7	4.5 ± 0.5			
5	112.1 ± 7.5	5.3 ± 0.4			
6	43.3 ± 4.0	2.1 ± 0.2			
0	59.7 ± 4.5	2.9 ± 0.2			
7	43.3 ± 4.0	2.1 ± 0.2			
/	59.7 ± 4.5	2.9 ± 0.2			
0	43.3 ± 4.0	2.1 ± 0.2			
0	59.7 ± 4.5	2.9 ± 0.2			
9	93.3 ± 5.1	4.4 ± 0.3			
10	86.1 ± 5.4	4.1 ± 0.3			
11	76.13 ± 5.0	3.63 ± 0.24			
12	207.09±7.1	9.86 ± 0.34			
12	200.81±1.6	9.56 ± 0.08			
13	179.1±1.0	8.53 ± 0.05			
14	162.2 ± 9.3	7.72 ± 0.45			
15	172.5±4.2	8.22 ± 0.20			
16	130.2 ± 7.8	6.20 ± 0.38			

Уровень радона вблизи криостата EDELWEISS в течении 2015 года. Периоды вы сокого уровня соответствуют откры той защите, проблемам с антирадоновой ф абрикой, и др.

Набор данных

Низкофоновые материалы / Припой

Sn + Pb

ICP-MS, Sn 99.99%				
Ag	2,5			
Cd	2,1			
Pb	230			
Bi	43,3			

Sn произведен методом зонной плавки в РХЛ

Measurements of Pb samples with the OBELIX (600 cm³ HPGe) spectrometer (LSM)

Roman lead

We drill a hole in the ingot and collected samples from different depth

ICP-MS elemental analysis						
	Pb Hellas	Pb ingot Pb ingot Pb ingot Pl				Pb ingot
	ppm	0-1.5 cm	1.5-3.7 cm	3.7-5.4 cm	5.4-7.15 cm	7.15-9.15 cm
		ppm	ppm	ppm	ppm	ppm
Ni	3.9	10.2	10.6	12.5	9.5	18.6
Ag	62.1	80.7	90.7	98.2	69	158
Cd	< 0.05	< 0.1	<0.1			
Sb	1.1	79.2	71.6	83	56.5	104
Tl	0.88	<0.7				
Bi	5.1	<4				
Th	Limit (<0.6	Limit (<0.6 ppb Hellas, <0.2 ingot)				
U	Limit (<2 ppb Hellas, <5 ppb ingot)					

Archeological Pb ingot are clean, attention to contamination during a treatment!

EDELWEISS-I для R&D

Участие в EDELWEISS обеспечивает доступ к инфраструктуре в подземной лаборатории LSM, необходимой для экспериментов на КАЭС

В заключение:

- Проект EDELWEISS-LT является продолжением многолетней научной программы по прямому поиску частиц темной материи с HPGe детекторами-болометрами;
- На новом этапе основная задача состоит в исследовании области легких WIMP, где EDELWEISS имеет лидирующие позиции;
- Основной ответственностью нашей группы является изучение фона основа для получения достоверных результотов;
- Участие в EDELWEISS обеспечивает доступ к инфраструктуре в подземной лаборатории LSM, необходимой для экспериментов на КАЭС.

Публикации

Q Arnaud, et al (EDELWEISS collaboration) Optimizing EDELWEISS detectors for low-mass WIMP searches, 2017, arXiv preprint arXiv:1707.04308, submitted to Phys. Rev. D E Armengaud, et al (EDELWEISS collaboration), Measurement of the cosmogenic activation of germanium detectors in EDELWEISS-III, Astroparticle Physics, 91, 2017, 51-64 E Armengaud, et al (EDELWEISS collaboration) Performance of the EDELWEISS-III experiment for direct dark matter searches, Journal of Instrumentation, 12, 08, P08010, 2017, arXiv preprint arXiv:1706.01070

L Hehn, et al (EDELWEISS collaboration) Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach, 2016, The European Physical Journal C 76 (10), 548 E Armengaud, et al (EDELWEISS collaboration) Constraints on low-mass WIMPs from the EDELWEISS-III dark matter search, 2016, Journal of Cosmology and Astroparticle Physics 2016 (05), 019

AV Rakhimov, et al, Neutron activation analysis of polyethylene from neutron shield of EDELWEISS experiment, Radiochimica Acta 103 (9), 673-678, 2015

G Angloher et al, EURECA conceptual design report, Physics of the Dark Universe, 3, 41-74, 2014 B Schmidt et al. Muon-induced background in the EDELWEISS dark matter search. 2013, Astroparticle Physics 44, 28-39.

E. Armengaud et al. (EDELWEISS collaboration) Axion searches with the EDELWEISS-II experiment. In: JCAP 1311 (2013), p. 067. arXiv: 1307.1488 [astro-ph.CO];

E Armengaud, et al (EDELWEISS collaboration) Background studies for the EDELWEISS dark matter experiment, Astroparticle Physics 47, 1-9, 2012

E Armengaud, et al (EDELWEISS collaboration) Search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors, Physical Review D 86 (5), 051701, 2012

During participation of JINR in the EDELWEISS program the most cited (more than 300 times) article is: E Armengaud et al. "Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes". Phys.Lett. B702 (2011), pp. 329–335. arXiv: 1103.4070 [astro-ph.CO]

Наимено	аименование узлов и систем установки, ресурсов,		Стоимость	Предложения Лабораторий по		
источник	сточников финансирования		узлов (тыс.\$)	распределению финансирования		
			установки.	и ресурсов		
			Потребности	1 год	2 год	3 год
	4.14		B pecypcax	10	10	10
	 Мате низкопе систем оборуд 	ериалы для тестирования ороговых детекторов (защита, вето а и т.д.). Материалы и ование чистой комнаты.	30	10	10	10
	2. Спек детекто	проскопическая электроника для ор с точечным контактом в LSM.	15	5	5	5
	3. Низк спектро детекто	офоновые нейтронные ометры на основе йодсодержащих оров.	15	5	5	5
4. Матер поддеру детекто управле нейтрон детекто станто		ериалы и оборудование для жания работоспособности оров, находящихся под нашем ением в EDELWEISS (3 нных детектора, 2 радоновых ора, альфа-спектрометр, HPGe ометр).	21	7	7	7
	5. Мате провед создан Радиох	ериалы и оборудование для ения калибровок, включая ие калибровочных источников. кимическое оборудование.	15	5	5	5
	6. Мате провед матери оборуд	ериалы и оборудование для ения R&D в ЛЯП (электроника, іалы для чистой комнаты, ование лабораторий).	9	3	3	3
	mon	,	105	35	35	35
Albie N	CBI	ИКИО ПО	3300	1100	1100	1100
Необходия ресурся	Нормо-ча	ооэп ляп	1500	500	500	500
Источники финансирования выболезования	Бюджет	Затраты из бюджета	105	35	35	35
	Внебюджетные средства	Средства по грантам. Другие источники финансирования (получение данных средства в настоящее время не гарантировано)	30	10	10	10

<u>№№</u> пп	Наименование статей затрат	Полная стоимость	1 год	2 год	3 год
	Прямые затраты на Проект				
1.	Компьютерная связь	3.0K US\$	1.0	1.0	1.0
2.	ооэп ляп	1500 норм ч.	500	500	500
3.	оп оияи	3300 норма ч.	1100	1100	1100
4.	Материалы	36.0K US\$	12.0	12.0	12.0
5.	Оборудование	69.0K US\$	23.0	23.0	23.0
6.	Взнос в коллаборацию	60.0K US\$	20.0	20.0	20.0
7.	Командировочные расходы	60.0K US\$	20.0	20.0	20.0

Итого по прямым расходам

228.0K US\$ 76.0K US\$ 76.0K US\$ 76.0K US\$

JINR group human resources are

Name	Category	Responsibilities	Time that each		
		-	participant will		
			give to the work		
			under the Project		
			in relation to its		
			Full Time		
			Equivalent(FTE)		
V. Brudanin	Head of	Administrative work	0.1		
	department				
Z. Kalaninova	Researcher	MC, data analysis	1.0		
A. Lubashevskiy	Senior Researcher	MC, running of JINR low	0.2		
-		threshold detectors, radon			
		measurement, data analysis			
D. Filosofov	Head of sector	Radiochemistry, low background	0.3		
		technique			
N. Mirzaev	Junior researcher	Radiochemistry, low background	0.3		
		technique			
L. Perevoshchikov	Researcher	Nuclear spectroscopy	0.2		
D. Ponomarev	Engineer	Neutron background	0.5		
	-	measurements, detectors building,			
		testing. Experiment running.			
A. Rakhimov	Junior researcher	Radiochemistry, neutron	0.3		
		activation analysis, nuclear			
		spectroscopy			
I. Rozova	Engineer	Data analysis	0.5		
S. Rozov	Engineer	Background study and	0.7		
		improvement, detector building,			
		testing, calibration, running.			
K. Shakhov	Engineer	Radon gas, radon emanation	1.0		
		detection / development and			
		measurements			
E. Yakushev	Head of sector	Administrative work, radon and	0.7		
		neutron measurements, detectors			
		building, commissioning, running			
Total FTE (Engineers): 2.7, Total FTE (Scientific staff): 3.1, Total FTE: 5.8					

Дальнейший прогресс: борьба с heat-only событиями

Энергетические спектры фононного (вверху) и ионизационного (внизу) каналов для одного из детекторов EDELWEISS. Результат фитирования модели фона к данным показан оранжевой линией. Компоненты фона: эксклюзивно-фононные (heat-only) события - красная линия (доминируют для малых энергий в фононном канале); Комптон - темно синяя линия; тритиевый бета спектр - бирюзовая линия; космогенные К и L-пики голубая линия, β-события - зеленая линия; ядра отдачи Pb-206 - коричневая линия.

Дальнейший прогресс: разрешение теплового сенсора

В R&D достигнута чувствительность 200 нВ/кэВ (улучшение в 6 раз)

Дальнейший прогресс: улучшение энергетического разрешения ионизационного канала

- Замена JFET (полевой транзистор с управляющим PN-переходом) на HEMT (транзистор с высокой подвижностью электронов)
 - Lower intrinsic noise, low heat load
 - Works at 4K: shorter cables reduces capacitance and improves resolution
- Successful HEMT amplifier with sub-100

 eV_{RMS} ion. resolution [A. Phipps, arXiv:1611.09712, collaboration between SuperCDMS and EDW]
- Step#1: Upgrade EDW ionization readout with this new design
- Step#2: Electrode design to reduce detector capacitance to reach 50 eV_{RMS}
- Increase of electrode spacing from 2 to 4
 mm already successfully implemented

A. Phipps et al, arXiv: 1611.09712

FID842 2 mm spacing

FID824 4 mm spacing

Последние несколько лет: значительный прогресс в улучшение чувствительности экспериментов по прямому поиску частиц темной метрии (WIMP).

Противоречивые результаты, особенно в области низких масс WIMP

