НТС 2017-10, ЛЯП ОИЯИ, 30.11.2017

Исследование процессов 2β-распада Se-82 с помощью детектора SuperNEMO

Тема 03-2-1100-2010/2018 "Неускорительная нейтринная физика и астрофизика" Продление проекта SuperNEMO

Докладчик: Шитов Юрий (ЛЯП, ОИЯИ)

supernemo

collaboration

От NEMO-3 к SuperNEMO: R&D c 2006

$$T_{1/2}^{0\nu}(y) \propto \frac{a\varepsilon}{W} \times \sqrt{\frac{M \times t}{N_{BGR} \times \Delta E}}$$

NEMO-3	\Rightarrow	SuperNEMO
¹⁰⁰ Mo, 7kg	lsotope, mass	⁸² Se, 100 kg
²⁰⁸ TI: < 20 μBq/kg ²¹⁴ Bi: < 300 μBq/kg	Background in ββ-foil	²⁰⁸ TI: < 2 μBq/kg ²¹⁴ Bi: < 10 μBq/kg
8%	Efficiency	30%
8% @ 3 MeV	Energy resolution (FWHM)	4% @ 3 MeV
$T_{1/2} > 2 \times 10^{24} \text{ y}$ $< m_v > < 0.3 - 0.6 \text{ eV}$	Sensitivity	T _{1/2} > 1-2 x 10 ²⁶ y <m<sub>v> < 40 – 110 meV</m<sub>

Глобальная задача проекта: экстраполяция успешной треко-калориметрической методики NEMO-3 на новый уровень чувствительности

Calorimeter R&D Optical unit

Calorimeter wall

Текущая задача: запуск SuperNEMO демонстратора, который должен достичь заявленных показателей подавления фона.

SuperNEMO

демонстратор

Source: 7kg of ⁸²Se

Tracker R&D: Wiring robot

CO: 1 quarter of tracker

Low background R&D: BiPo-3

NEMO/SuperNEMO: этапы пути

Коллаборации Nemo-3/SuperNemo

Neutrino Ettore Majorana Observatory (Neutrino Experiment on MOlybdenum – historical name)

~ 80 physicists, 11 countries, 25 laboratories

Детектор NEMO-3

Modane (Fréjus) Underground Laboratory (LSM) : 4800 m.w.e.

Набор данных: февраль 2003 – январь 2011 Измерялись 7 ββ-изотопов: ⁴⁸Ca, ⁸²Se, ⁹⁶Zr,¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹⁵⁰Nd <u>Source</u>: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

Calorimeter:

1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water (~30 cm) + Wood (Top/Bottom/Gapes between water tanks)

Able to identify e⁻, e⁺, γ and α –delayed

Self-detection of all own background channels

Событие двойного бета распада в NEMO-3

NEMO-3: $2\nu\beta\beta$ -спектры ¹⁰⁰Мо

Sum energy spectrum 12000 Number of events/0.05 MeV S/B~40 Data Monte Carlo 10000 Background subtracted 8000 6000 4000 2000 0 2.5 3 0.5 2 1.5 0 E_{2e} (MeV)

«ββ-фабрика» (1 ββ-событие каждые 2.5 минуты) Уникальные данные для прецизионных исследований

Single electron spectrum

8

Определение механизма $2\nu\beta\beta$ -распада в ¹⁰⁰Мо

Методика чувствительна к 2vββ-механизму: первая демонстрация!

The SuperNEMO Demonstrator

Modane (Fréjus) Underground Laboratory (LSM) : 4800 m.w.e.

<u>Source</u>: 7 kg of ⁸²Se, 36 strips planar geometry, S ~ 15 m², 40-80 mg/cm² <u>Tracking detector</u>:

drift wire chamber operating

in Geiger mode (2034 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>:

520 plastic scintillators in 2 main walls + PMTs: 8" R5912-03 HAMAMATSU 200 PS in side walls (X-walls) + PMTs: 5" R6594 HAMAMATSU

Magnetic field: 25 Gauss.

VETO:

60 plastic scintillators in top/bottom walls + PMTs: 5" R6594 HAMAMATSU SHIELD:

To be built. Planned: 20 cm of iron + 30 cm of borated polyethylene.

SuperNEMO калориметр

- 520 main optical modules
- 8" high QE radiopure PMTs
- σ_t = 400 ps at I MeV
- Energy resolution 7.2%/JE(MeV)
- Calibration system allows stability to < 1%

SuperNEMO трекер

Nucl.Instrum.Meth. A824 (2016)

- Multi-wire drift chamber in Geiger mode
- Ultrapure materials:copper, steel, duracon .
- Robotic production of 2034 drift cells
- Radiopure gas flow, anti-radon sealing
- <1% dead channels</p>

SuperNEMO: фольги-источники

- 36 foils made of ⁸²Se powder mixed with PVA glue + mylar mechanical support (200 um thick)
- 7 kg of ⁸²Se ($Q_{\beta\beta}$ =2.996 MeV)
- Target limits (challenging) on foil contamination: 208 TI $\leq 2 \mu$ Bq/kg $^{214}\text{Bi} \leq 10 \,\mu\text{Bq/kg}$
- BiPo detector in Canfranc laboratory to measure source foil contamination: preliminary results indicate levels of ²⁰⁸TI [10-30] uBq/kg (90% C.L.)

JINST 12 (2017) no.06

Детектор Ві-Ро З

- HPGe spectroscopy not sensitive enough to reach few µBq/Kg: BiPo-3 dedicated setup at Canfranc underground lab
- 2 modules of 3.0x0.6 m² can measure up to 1.4 kg of ⁸²Se foil with thickness of 40 mg/cm²
- ²¹⁴Bi and ²⁰⁸TI measured trough process from natural radioactivity chain
- Thin radiopure plastic scintillators coupled to lightguides and low radioactivity PTMs

Борьба с радоном

Diffusion!

<image>

Radon emanation setup.

Radon line to work with tracker

Tracker module under Rd measurement

Очень трудо- и время-затратная работа: 10 дней на одно базовое измерение. SuperNEMO коллаборация обладает уникальным опытом и базой данных по радоновым измерениям для различных материалов.

Статус установки

SuperNEMO Демонстратор практически полностью смонтирован в LSM (за исключением нескольких фольг источников и калибровочной системы). Закрытие и запуск в полном объеме запланировано на весну 2018 года.

Вклад ОИЯИ в Демонстратор

- Изготовление 720 блоков пластических сцинтилляторов для калориметра Демонстратора (в сотрудничестве с Пражским университетом).
- Изготовление 60 оптических модулей для системы ВЕТО (сцинтиллятор + ФЭУ 5" R6594 HAMAMATSU).
- Приобретение 100 ФЭУ 8" R5912-03 HAMAMATSU для калориметра.
- Приобретение 7 крейтов для электроники калориметра.
- Покупка 1.5 кг обогащенного ⁸²Se для создания источников.
- Разработана и реализована уникальная методика очистки ⁸²Se.
 Оборудована чистая комната и очищено 3.5 кг селена, использовавшегося для создания источников Демонстратора.
- Изготовление сигнальных и HV-кабелей для трекера.
- Приобретение, создание и обслуживание оборудования для низкофоновых измерений: германиевые, радоновые, нейтронные детекторы в LSM.
- Участие в разработке программного обеспечения, симуляциях.

Чистая комната для очистки ⁸²Se (ЛЯП ОИЯИ)

Ожидаемые результаты

	SuperNEMO	Status	
isotope	⁸² Se (or other, e.g. ¹⁵⁰ Nd)	82Se	
isotope mass	7 -+ 100 kg	7kg	
radon	0.15 mBq/m ³	in pro <mark>g</mark> ress	
internal	²⁰⁸ TI ≤ 2 µBq/kg	in	
contamination $^{214}\text{Bi} \le 10\mu\text{Bq/kg}$		progress	
FWHM	8% @ 1 MeV	ok	

In [2.8-3.2] MeV:

- Efficiency: 27.5%
- Total number of bkg events: 0.21
- Background index: 3 x 10⁻⁵ cts/(keV kg yr)

 $> 6 \times 10^{24} \text{yr}$ *m*i < 0.20 - 0.55 eV

План работ

- Весна 2018 завершение сборки и запуск Демонстратора без нейтронной защиты.
- Лето 2018 года калибровка Демонстратора, запуск накопления данных в конфигурации без нейтронной защиты
- Первая половина 2019 года создание нейтронной защиты Демонстратора.
- Вторая половина 2019 года калибровка и запуск накопления данных в полной конфигурации Демонстратора.
- 2020-2021 год накопление данных, анализ данных, оценка фонов, борьба с фонами, если потребуется, публикация результатов.
- В течении всего срока продолжение программы R&D по методикам обогащения других изотопов: ¹⁵⁰Nd, ⁹⁶Zr, ⁴⁸Ca. Совершенствование методики очистки ⁸²Se. Совершенствование методики производства пластических сцинтилляторов.

Выводы

- В основе экспериментов NEMO/SuperNEMO лежит уникальная трекокалориметрическая методика для исследования ββ-процессов, успешно разрабатываемая в течении десятков лет. Она позволяет восстанавливать полную картину (паттерн) ββ-распада и тестировать его механизм.
- R&D проекта SuperNEMO ведутся с 2006 года, в результате чего был разработан Демонстратор (первый модуль) SuperNEMO. Его основная задача демонстрация работоспособности методики в отношении подавления фонов (внутри фольг-источников и радон), а также физические измерения. На 7 кг
 ⁸²Se в течении 2.5 лет планируется достичь чувствительность к эффективной массе нейтрино 0.20 - 0.55 эВ.
- Демонстратор практически полностью смонтирован в LSM, его запуск запланирован на весну 2018 года.
- Создание Демонстратора стало возможно при решающем (критическом) вкладе ОИЯИ в целый ряд систем: калориметр, трекер, источники
- На данном этапе выполнения проекта (фаза накопления данных) требуемые затраты невелики при гарантированной выгоде – участии в публикациях.
- В случае успешной работы Демонстратора открывается возможность для полномасштабного проекта: измерение 100 кг источника в 20 модулях при чувствительности 50-100 мэВ к эффективной майорановской массе нейтрино

План-график и необходимые ресурсы (форма №26)

Наименование узлов и систем установки, ресурсов, источников финансирования		Стоимость узлов (тыс.\$) установки. Потребности в	Предложения Лабораторий по распределению финансирования и ресурсов			
			ресурсах	1 год	2 год	3 год
	1. Матери	алы для калориметра (стирол, алюминий, р-терфенил, РОРОР	24	8	8	8
и	2. Спектроскопическая электроника для стендов-тестирования пластмассовых сцинтилляторов и ФЭУ			10	0	0
узлы	3. Бориров Демонстра	занный полистирол для создания нейтронной защиты атора	40	30	10	0
4. Материалы и оборудование для поддержания работоспособнос детекторов, находящихся под нашем управлением в Демонстрато SuperNEMO (2 радоновых детектора, HPGe спектрометр) и прове калибровок, включая создание калибровочных источников. Радиохимическое оборудование.			45	15	15	15
Итого		119	63	33	23	
Необхо- димые ресурсы	Нормо-часы	И ВИО ПО	0	0	0	0
		ООЭП ЛЯП	1800	600	600	600
Источники финансирования	Бюд жет	Затраты из бюджета	119	63	33	23
	Внебюджетн ыесредства	Средства по грантам. Другие источники финансирования (получение данных средства в настоящее время не гарантировано)	30	10	10	10

Смета затрат (форма №29)

№№ пп	Наименование статей затрат	Полная стоимость	1 год	2 год	3 год
Прямые затраты на Проект					
1.	Компьютерная связь	6.0K US\$	2.0	2.0	2.0
2.	ооэп ляп	1800 норм ч.	600	600	600
3.	опоияи	0 норма ч.	0	0	0
4.	Материалы	64.0K US\$	38.0	18.0	8.0
5.	Оборудование	55.0K US\$	25.0	15.0	15.0
6.	Взнос в коллаборацию	60.0K US\$	20.0	20.0	20.0
7.	Командировочные расходы	60.0K US\$	30.0	15.0	15.0

Итого по прямым расходам

245.0K US\$ 115.0K US\$ 70.0K US\$ 60.0K US\$

Публикации по SuperNEMO в 2016-2018 гг.

- R. Arnold, O. Kochetov et.al., "Measurement of the double beta-decay half-life and search for the neutrinoless double beta-decay of Ca-48 with NEMO-3 detector", Phys. Rev. D93 (2016) 112008-1 – 112008-9.
- 2. R. Arnold, O. Kochetov et.al., "Measurement of the double beta-decay half-life and search for the neutrinoless double beta-decay of Cd-116 with the NEMO-3 detector",
- 3. arXiv: 1610.03226v2[hep-ex], Phys. Rev. D95 (2017) 012007-1 012007-12.
- R. Arnold, O. Kochetov et.al., "Measurement of the double beta-decay half-life of Nd-150 and a search for neutrinoless double beta-decay processes with the full exposure from the NEMO-3 detector", Phys. Rev. D94 (2016) 072003.
- 5. S. Blot from NEMO-3&SuperNEMO Collaborations, "Investigating bb decay with NEMO-3 and SuperNEMO experiments", Journal of Physics: Conference Series 718 (2016).
- 6. H. Gomes from NEMO-3&SuperNEMO Collaborations, "Latest results of NEMO-3 experiment and present status of SuperNEMO", Nuclear and Particle Physics Proceedings (2016) 1765-1770.
- P.Povinec SuperNEMO Collaboration, "SuperNEMO a new generation of underground experiments for double beta-decay investigations", The 14th Vienna Conference on Instrumentation 15-16 Feb., 2016.
- 8. A.S. Barabash, O. Kochetov et. al.,"Calorimeter development for the SuperNEMO double beta-decay experiment", NIM A868 (2017) 98-108.
- 9. R. Arnold, O. Kochetov et al. from NEMO-3 Collaboration, "Search for neutrinoless quadrupole-b decay of the Nd-150 with the NEMO-3 detector" Phys. Rev. Lett. 119 (2017) 041801.
- 10. A.S. Barabash, O. Kochetov et al.,"The BiPo-3 detector for the measurement of ultra low natural radioactivities of thin materials" JINST 12 (2017) P06002.
- 11. P. Loazia, O.Kochetov et al., "The BiPo-3 detector", Applied Radiation and Isotopes 123 (2017) 54-59.

Участники проекта

N	Person	Status	Subjects	FTE
1	O.I Kochetov	Project Leader	calorimeter	0.9
2	Yu.A.Shitov	Deputy Leader	software, data analysis	0.5
3	V.B.Brudanin	Participant	calorimeter	
4	V.G.Egorov	Participant	calorimeter, data analysis	
5	3. A.A. Smolnikov	Participant	calorimeter, data analysis	0.3
6	4. A.A. Klimenko	Participant	software, data analysis	0.35
7	5. V.I. Tretyak	Participant	software, data analysis	0.9
8	7. D.V. Karaivanov	Participant	radiochemistry, Se-82 purification, sources	0.35
9	8. A.V. Rahimov	Participant	radiochemistry, Se-82 purification, sources	0.35
10	9. D.V. Filosofov	Participant	radiochemistry, Se-82 purification, sources	0.3
11	10. N.A. Mirzaev	Participant	radiochemistry, Se-82 purification, sources	0.4
12	11. Yu.V. Yushkevich	Participant	electromagnetic mass separation, calibration	0.25
13	12. A.V. Salamatin	Participant	electronics,cables	0.3
14	13. V.V. Timkin	Participant	calorimeter, VETO system and cables	0.9
15	14. I.B. Nemchenok	Participant	PS production, calorimeter and VETO system	0.2
16	15. I.I. Kamnev	Participant	PS production, calorimeter and VETO system	0.3
17	16. O.I. Vagina	Participant	PS production, calorimeter and VETO system	0.3
In total				5.2

Backup slides

Calorimetry vs. tracko-calo

- Better resolution
- high (~ 100%) efficiency

- •Any ββ-source can be measured
- Potentially zero-background exp.
- Test of different ββ0v mechanisms in the case of observation

Experimental drawbacks

We don't see electrons, just energy released - no absolute proof, that we see $\beta\beta0\nu$ -peak and not something else (γ -line)! difficult to accept large mass •smaller efficiency worth resolution

Фоны SuperNEMO

Internal backgrounds

2vββ tail and radio-impurities inside the source foil 208Tl (from ²³²Th), ²¹⁴Bi (from ²³⁸U)

External backgrounds

Radio-impurities of the detector

Radon inside the tracking detector

Deposits on the wire near the $\beta\beta$ foil Deposits on the surface of the $\beta\beta$ foil

Backgrounds are measured through different background channels using event topologies

Квадрупольный бета-распад - $0\nu4\beta$

- Neutrinoless quadruple beta decay
 - Proposed by Heeck and Rodejohann [1]
 - Lepton number violating process
 - Neutrinos are Dirac particles and $0\nu\beta\beta$ is forbidden
 - The best candidate is $^{150}\mathrm{Nd} \rightarrow ^{150}\mathrm{Gd} + 4\mathrm{e}$ $(\mathrm{Q}_{4\beta} = 2.079~\mathrm{MeV})$
- Exploit the unique ability of NEMO-3 to reconstruct the kinematics of each e-
- No evidence of this decay

$$T_{1/2}^{0\nu4\beta} > (1.1 - 3.2) \times 10^{21} \text{ y}$$
 According the model

World's first limit on this process

