

Проект **GERDA ("G&M")**: поиск безнейтринного двойного бета распада ⁷⁶Ge

Константин Гусев НТС 2017-11 | ЛЯП ОИЯИ | 05 декабря 2017

GERDA Collaboration

GERmanium **D**etector **A**rray

Features

- ✓ Ge detectors enriched in ⁷⁶Ge
- very good energy resolution
 ~0.1% at Q_{ββ}
- high detection efficiency source = detector
- Ultra low background
 - deep underground location (LNGS, Italy, 3500 m.w.e)
 - ✓ carefull assay of materials
 - passive and active shields
 - bare Ge detectors in liquid argon (LAr) first time ever!
 - pulse shape discrimination (PSD)
 + active LAr veto (in Phase II)

GERDA Phases and sensitivity

Phase II (Dec 2015 – ongoing): Add new BEGe detectors (20 kg) BI ≈ 0.001 cts / (keV kg yr) Sensitivity after 100 kg yr

GERDA

Phase I (Nov 2011 – May 2013): Use refurbished HdM & IGEX (18 kg) BI ≈ 0.01 cts / (keV kg yr) Sensitivity after 20 kg yr

 $T_{1/2}^{0\nu} > 2.1 \times 10^{25} \text{ yr} (90\% \text{ CL})$ (PRL 111 (2013) 122503)

GERDA Phase II Started in December 2015

LAr veto

HPGe detectors array

All 40 detectors and LAr veto work

GERDA Background rejection

Background:

Multi-site energy deposition:

- 1 HPGe Pulse Shape Discrimination (**PSD**)
- > 1 HPGe anti-coincidence (AC)
- HPGe + LAr LAr veto

Surface events – PSD

- ✓ PSD and LAr complementary
- ✓ All α -s cut by PSD!

GERDA Performance

500

1000

1500

- Weekly calibrations with ²²⁸Th sources
- Energy reconstruction with ZAC filter

(Eur. Phys. J. C 75 (2015) 255)

• Final resolution corrected for ^{40/42}K lines in physics data

FWHM at Q_{ββ}: Coaxial: **3.90**(7) keV BEGe: **2.93**(6) keV

2500 energy [keV]

2000

enriched coaxial

enriched BEGe

Mar/17

May/17 date

GERDA 17-07

GERDA Performance

GERDA Phase II 2016 results

ARTICLE Nature 544 (2017) 47 $Coll:0.1038/nature21717 Background-free search for neutrinoless double - <math>\beta$ decay of ⁷⁶Ge with GERDA

Phase IIa exposure: Coaxials: 5 kg yr BEGe: 5.8 kg yr

- New $T_{1/2}^{0\nu\beta\beta}$ limit from Phase I & Phase IIa data:
 - ✓ Sensitivity: $T_{1/2}^{0\nu} > 4 \times 10^{25} \text{yr} (90\% \text{ CL})$
 - ✓ Limit: $T_{1/2}^{0\nu} > 5.3 \times 10^{25} \text{yr} (90\% \text{ CL})$
- Background index (BI) for BEGe: $0.7^{+1.1}_{-0.5} \times 10^{-3}$ cts/(keV kg yr)

< 1 count in ROI up to design exposure (100 kg yr)

background free!

GERDA Data taking status 2017

- Data taking is ongoing
 - Phase II exposure increased by x3 with respect to Nature paper (Phase IIa)
 - Valid exposure accumulated 34.4 kg yr up to Apr 15th (Phase IIb)
 - 18.2 kg·yr of BEGe data
 - 16.2 kg·yr of Coaxial data
 - About 10 more kg·yr already available (Apr-Nov)

- Only BEGe dataset unblinded (12.4 kg yr)
- New coaxial data (11.2 kg yr) still blinded:
 - Background similar to Phase IIa
 - Can be **improved further** by better rejection of α -s from the **groove**
 - Work on better α cut is ongoing
- Total unblinded exposure: 23.3 kg yr

GERDA Spectra 2017

After LAr veto:

GERDA Spectra 2017

After LAr veto + PSD:

GERDA Phase II 2017 result

Full exposure (46.7 kg yr)

	Exposure (kg yr)
Phase I (4 sets)	23.5
Phase IIa – coaxials	5.0
Phase IIb – BeGe	5.8 + 12.4 = 18.2

	Profile likelihood 2-side test stat.	Bayesian flat prior on cts
0vββ cts best fit value (cts)	0	0
$T_{1/2}^{0 uetaeta}$ lower limit (× 10^{25} yr)	> 8.0 (90% CL)	> 5.1 (90% CL)
$T_{1/2}^{0 uetaeta}$ median sensitivity (× 10^{25} yr)	5.8 (90% CL)	4.5 (90% CL)

Best in $0\nu\beta\beta$ field!

К. Гусев | НТС ЛЯП | 5.12.2017

GERDA First background free 0vββ search

- Phase II is successfully taking data since December 2015
- Background design goal reached:
 - ✓ BI in ROI for BEGe ~ 10⁻³ counts/(keV kg yr)
 - best BI in ROI ever achieved!
- GERDA will stay background free up to 100 kg yr
- Sensitivity goal (~ 10²⁶ yr):
 - ✓ should be reached in 2018
- New $T_{1/2}^{0\nu\beta\beta}$ limit from Phase I & Phase II data:
 - ✓ Sensitivity: $T_{1/2}^{0\nu} > 5.8 \times 10^{25} \text{yr} (90\% \text{ CL})$ (best in the 0v86 field)

✓ Limit: $T_{1/2}^{0\nu} > 8.0 \times 10^{25} \text{yr} (90\% \text{ CL})$

К. Гусев | НТС ЛЯП | 5.12.2017

GERDA

Next steps: possible upgrade

- New detectors:
 - Novel inverted coaxial detector (massive as coaxial and PSD as BEGe)
 - ✓ Enriched material procured
 - ✓ Crystal production ongoing
 - ✓ Significant financial support from JINR!!!

Nylon mini-shrouds (MS) ✓JINR responsibility

Improved LAr veto:

✓ Production ongoing
 ✓ Common TUM and JINR effort
 Cables:

✓ New cables (cleaner) are ready

All detectors have to be completely dismounted Existing detectors, new detectors, new cables, nylon MSs, new LAr veto needs to be integrated and data taking has to be restarted ~ few months of work Upgrade process will be organized by JINR team

GERDA & Majorana

- Bare Ge-diodes array in LAr
- Shield: high-purity LAr/ H₂O

Phase I: 17 kg (HdM/IGEX)* Phase II: **38 kg** ⁷⁶**Ge** Arrays of Ge-diodes in high purity electroformed Cu cryostats

Shield: Pb, electroformed Cu

30 kg ⁷⁶Ge

Majorana Demonstrator

LEGEND: 200 kg and 1000 kg ⁷⁶Ge

* - completed

G&M

Majorana Demonstrator status

First results from Modules 1 and 2 in-shield

- ✓ Exposure: 1.39 kg yr
- ✓ Background index of 1.8 x 10⁻³ cnt/(keV kg yr)
- $\checkmark\,$ Analysis cuts are still being optimized
- ✓ 10x more exposure in hand analysis ongoing
- The ⁷⁶Ge enriched point contact detectors developed by MAJORANA
 - ✓ best energy resolution (2.4 keV FWHM at 2039 keV) of any $\beta\beta$ -decay experiment.
 - ✓ provide excellent pulse shape discrimination reduction of backgrounds.
 - ✓ at low energies have sub-keV energy thresholds and excellent resolution allowing the DEMONSTRATOR to perform sensitive tests in this region for physics beyond the standard model (*PRL* **118**, 161801 (2017)).
- The DEMONSTRATOR's initial backgrounds and the GERDA Phase II backgrounds are the **lowest backgrounds** in the region of interest (ROI) achieved to date of **all** current or previous **0v**ββ experiments.

G&M future \rightarrow LEGEND

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

LEGEND mission:

"The collaboration aims to develop a phased, ⁷⁶Ge based doublebeta decay experimental program with discovery potential at a halflife significantly close to 10²⁸ years, using existing resources as appropriate to expedite physics results."

G&M future \rightarrow LEGEND

Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay

First stage:

- ✓ (up to) 200 kg in upgrade of existing GERDA infrastructure at LNGS
- ✓ bkg reduction by factor
 3-5 w.r.t GERDA
- Sensitivity **10²⁷** yr

Subsequent stages:

- ✓ 1000 kg (staged)
- timeline connected to
 DOE down select process
- ✓ bkg factor 30 w.r.t GERDA
- Location tbd
- Sensitivity 10²⁸ yr

G&M future \rightarrow LEGEND Sensitivity

- ✓ $T_{1/2}$ unknown, BSM → 'around corner'
- ✓ background reduction in steps → phased approach
- ✓ inputs: 60% efficiency (GERDA number)
- ✓ Background: GERDA/MJD ~ 3 cts/(FWHM t yr)
 200 kg ~ 0.6 cts/(FWHM t yr)
 1000 kg ~ 0.1 cts/(FWHM t yr)

N.B.: background-free operation is a prerequisite for a discovery

К. Гусев | НТС ЛЯП | 5.12.2017

Project GERDA ("G&M") → LEGEND

- ✓ Ultimate Goal: exposure of 10 t yr; background of 0.1 cnt / FWHM t yr.
- ✓ GERDA & Majorana are taking data in the "background free" regime.
- ✓ LEGEND is selecting the best technologies from GERDA and Majorana as well as contributions from other groups and experiments.
- ✓ Taking a **phased, stepwise implementation**; *e.g.* 200 \rightarrow 500 \rightarrow 1000 kg.
- ✓ Preparations for LEGEND 200 are underway. Possible start at the end of 2020.
- ✓ Baseline design for LEGEND 1000 established.
- ✓ Thanks to excellent energy resolution ⁷⁶Ge has a discovery potential at a halflife close to 10²⁷ (LEGEND-200) and 10²⁸ (LEGEND-1000) years respectively.

GERDA ("G&M") at JINR

Name	Status	Responsibilities	FTE
K. Gusev	Project leader	Project coordination, Ge detectors, ultrapure materials	1.0
A. Lubashevskiy	Deputy leader	Data analysis, Ge detectors, ultrapure materials	0.4
D. Zinatulina	Deputy leader	Muon veto, Ge detectors	0.5
V. Brudanin	Participant	Head of the department, ⁷⁶ Ge procurement	0.1
D. Borowicz	Participant	Ge detectors	0.8
V. Egorov	Participant	Active veto systems	0.1
M. Fomina	Participant	Active veto systems	0.2
A. Klimenko	Participant	Analysis	0.5
O. Kochetov	Participant	Ultrapure materials, active veto systems	0.1
I. Nemchenok	Participant	Ultrapure materials, active veto systems	0.2
S. Nepochatich	Participant	Analysis, Ge detectors	1.0
N. Rumyantseva	Participant	Analysis, Ge detectors	0.7
V. Sandukovsky	Participant	Ge detectors	0.5
E. Shevchik	Participant	Active veto systems	0.2
M. Shirchenko	Participant	Active veto systems, Ge detectors	0.3
A. Smolnikov	Participant	Active veto systems, ultrapure materials, analysis	0.8
I. Zhitnikov	Participant	Active veto systems, Ge detectors	0.2
In total			7.6

GERDA ("G&M") at JINR Plans

2018-2019:

The upgrade of the GERDA experiment by adding novel enriched detectors and exchanging of the existing liquid argon veto by improved version. Achieving of design sensitivity of 10²⁶ years.

2019-2020:

Reaching of planned GERDA exposure of 100 kg yr. Preparation of the first phase of next generation experiment LEGEND (procurement of enriched ⁷⁶Ge, production and testing of new Ge detectors, R&D of low background materials and electronics).

2020-2021:

Completion of the GERDA experiment, publication of results. Modification of GERDA cryostat for LEGEND Phase I. Integration and start data taking of the LEGEND experiment.

GERDA ("G&M") at JINR Financing (form N 26)

Expenditures, resources, financing sources			Costs (k\$) Resource requirements	Proposals of the Laboratory on the distribution of finances and resources			
				year	year	year	
	•	 Production of the test stand for Ge detectors R&D of ultrapure materials Procurement of ⁷⁶Ge detectors R&D of low background 	40 30 150	30 10 50	10 10 50	10 50	
50.1		electronics	30	10	10 10	10 10	
enditu		 Procurement of prototype detectors 	60	60	10	10	
2 > Ц	L Y L	Construction/repair of premises		00			
		Materials: 1. Enriched ⁷⁶ Ge 2. Scintillating materials 3. Chemicals for Ge detectors	150 30 5	50 20 2	50 7 2	50 3 1	
Required resources	Standard hour	Resources of – Laboratory design bureau; – JINR Experimental Workshop; – Laboratory experimental facilities division; – accelerator; – computer. Operating costs.					
Financing sources	Budgetary resources	Budget expenditures including foreign-currency resources.	621	274	181	166	
	External resources	Contributions by collaborators. Grants. Contributions by sponsors. Contracts. Other financial resources, etc.	30	10	10	10	

GERDA ("G&M") at JINR Financing (form N 29)

	Expenditure items	Full cost	1 st year	2 nd year	3 rd year
	Direct expenses for the Project				
1.	Accelerator, reactor	h			
2.	Computers	h			
3.	Computer connection	6 k\$	2	2	2
4.	Design bureau	standard hour			
5.	Experimental Workshop	standard hour			
6.	Materials	185 k\$	72	59	54
7.	Equipment	340 k\$	170	90	80
8.	Construction/repair of premises	k\$			
9.	Payments for agreement-based research	k\$			
10.	Travel allowance, including: a) non-rouble zone countries b) rouble zone countries c) protocol-based	90 k\$	30	30	30
	Total direct expenses	621	274	181	166

GERDA publications

1. «The GERDA experiment for the search of $0\nu\beta\beta$ decay in ⁷⁶Ge», Eur. Phys. J. C 73 (2013) 2330.

2. «Results on Neutrinoless Double- β Decay of ⁷⁶Ge from Phase I of the GERDA Experiment», Phys. Rev. Lett 111 (2013) 122503.

3. «Results on $\beta\beta$ decay with emission of two neutrinos or Majorons in ⁷⁶Ge from GERDA Phase I», Eur. Phys. J. C 75 (2015) 416.

- 4. « $2\nu\beta\beta$ decay of ⁷⁶Ge into excited states with GERDA Phase I», J. Phys. G: Nucl. Part. Phys. 42 (2015) 115201.
- 5. «The background in the $0\nu\beta\beta$ experiment GERDA», Eur. Phys. J. C 74 (2014) 2764.
- 6. «Pulse shape discrimination for GERDA Phase I data», Eur. Phys. J. C 73 (2013) 2583.
- 7. «Background-free search for neutrinoless double- β decay of ⁷⁶Ge with GERDA», **Nature** 544 (2017) 47.
- 8. «Mitigation of ⁴²Ar/⁴²K background for the GERDA Phase II experiment», submitted to Eur. Phys. J. C, preprint: https://arxiv.org/abs/1708.00226.
- 9. «LArGe: active background suppression using argon scintillation for the Gerda $0\nu\beta\beta$ -experiment», Eur. Phys. J. C 75 (2015) 506.
- 10. «The performance of the Muon Veto of the GERDA experiment», EPJC 76 (2016) 298.

JINR in GERDA

Additional slides

К. Гусев | НТС ЛЯП | 5.12.2017

Comparison experiments

		mass [kg]* (total/FV)	FWHM [keV]	background& [cnt/t yr FWHM]	T _{1/2} limit sensitivity [10 ²⁵ yr] after 4 yr	worst m _{ee} limit [meV] (lowest NME, g _A unquenched)	
Gerda II	Ge	35/27	3	5	15	190 run	ning
MajoranaD	Ge	30/24	3	5	15	190	
EXO-200	Xe	170/80	88	220	6	240	
Kamland-Z	Xe	383/88 750/??	250	90 ?	6 50	240 85 de	sign
Cuore	Те	600/206	5	230	9	210	
NEXT-100	Xe	100/80	17	30	6	240	
SNO+	Те	2340/260	190	60	17	160	
nEXO	Xe	5000/4300	58	5	600	24 fu	ture
Ge-200	Ge	200/155	3	1	100	75	
Ge-1000	Ge	1000/780	3	0.2	1000	24	

* total= element mass, FV= $0\nu\beta\beta$ isotope mass in fiducial volume (incl enrichment fraction) & kg of $0\nu\beta\beta$ isotope in active volume and divided by $0\nu\beta\beta$ efficiency Note: values are design numbers except for GERDA, EXO-200 and Kamland-Zen