CMS

Report on the Scientific Results JINR Participation in Compact Muon Solenoid at the LHC Topic 02-0-1083-2009/2019

Igor Golutvin - scientific leader Anatoly Zarubin - project leader Sergei Shmatov - physics coordinator

67 participants from JINR
108 participants from JINR member states
14 paid authors and 4 unpaid authors (Ph.D. students) from JINR
10 paid authors and 1 unpaid authors (Ph.D.) from JINR member states

Maria Savina on behalf of the JINR CMS Group

48th Meeting of the Program Advisory Committee for Particle Physics, January 31, 2018, JINR, Dubna

JINR Participation in CMS Physics Analyses, I (Standard Model Tests)

- $\checkmark\,$ physics with high-mass dimuons
 - DY study in TeV energy region

Outline

- Forward-backward asymmetry
- Weinberg angle measurement
- ✓ physics with jets (calibrations, charge multiplicity studies etc.)

JINR Participation in CMS Physics Analyses, II (Search for New Physics Beyond the SM)

- ✓ physics with dimuons (Z', KK modes of gravitons)
- ✓ new physics in a multijet channel (BH, SB)

Computing and Data Processing

Summary

46.02 fb⁻¹ recorded by the CMS with 90% data taking efficiency

94% of recorded data was used for the physics analysis

Operation efficiency of

Endcap Hadron Calorimeter - ~100%

Forward Muon Stations – 98.5%

Participation in CMS Upgrade Program is reviewed by A. Zarubin

The Standard Model: Drell-Yan Process, Higgs Boson, Charged Multiplicity

Drell-Yan Study: Standard Model and Beyond

The history-steeped JINR group analyses direction for the CMS: the long way from 2002 to 2018, from physics motivations through Physics TDR 2006 up to the newest results and papers of the Run II. The work is updating permanently.

Study of Drell-Yan process to verify the Standard Model

✓ cross-sections vs invariant mass (including HO corrections, PDF etc.)

✓ angular distributions (helicity structure of processes)
✓ forward-backward asymmetry and weak-mixing angle

$$pp \rightarrow G_{KK}, Z_{KK}, Z' \rightarrow e^+e^-, \mu^+\mu^-, \gamma\gamma, jet + jet$$

Heavy KK-excitations of gravitons (spin-2 state)

New physics and new particles in a virtual exchange channel: contributions to Drell-Yan

✓ cross-sections (NP mass limits, energy scale limits, couplings etc.)

✓ angular distributions (NP spin) and an asymmetry (NP model)
 Extra gauge bosons Z' (spin-1 state)

Drell-Yan: Cross-Section @ 13 TeV

efficiency (1.1-2.1%), background (K-factor and PDF) (3.6-10%), unfolding (up to 1.7%), FSR (up to 2%), other (up to 3%), acceptance (up to 2.2%)

1 young PostDoc +1 MSc + 1 PhD St (from JINR)

M. Savina, "JINR Participation in Compact Muon Solenoid at the LHC", JINR PAC, January 31, 2018

(FEWZ) + MSTW08 PDF

Results for \sim 30 fb⁻¹ is ready,

collaboration approval is in progress

Drell-Yan: Forward-Backward Asymmetry

$$\frac{d\sigma}{d(\cos\theta^*)} = \frac{1}{2\left(1+\frac{b}{3}\right)} \left(1+b\cos^2\theta^*\right) + A_{FB}\cos\theta^*$$
$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = \frac{3B}{8A}$$
$$\sigma_F = \int_0^1 \frac{d\sigma}{d(\cos\theta)} d(\cos\theta)$$
$$\sigma_B = \int_{-1}^0 \frac{d\sigma}{d(\cos\theta)} d(\cos\theta)$$

AFB value is sensitive to contribution both vector and axial-vector couplings

⇒ Test of SM / new physics

"Dilution" asymmetry measurements:

- bin-to-bin migration due to finite detector resolution
- Final-State-Radiation (FRS)
- acceptance cuts
- unknown quark/antiquark direction for the LHC

1 MSc + 1 PhD St (from JINR) and 1 MSc + 1 PhD St (from Minsk)

EPJ. C 76 (2016) 325, CMS AN-2017/155

Data is consistent with SM

Results ~30 fb-1 at 13 TeV is coming

soon

Special focus on development and comparison tools (FEWZ, SANC, READY, LPPG etc) for EWK corrections accounting (JINR + Minsk)

 $2012 \rightarrow 2017$: From first discovery with gauge bosons, to confirming fermion couplings

$\textbf{H} \rightarrow \tau \tau \text{ observation}$

+ Combination of 7/8/13 TeV \rightarrow 5.9 σ

Evidence for the H \rightarrow bbar

+ Combination of 7/8/13 TeV \rightarrow 3.8 σ

SM Higgs is alive again (signal strength is agreed with SM)

Rare Higgs decays and searching extra Higgs bosons is progress

- ✓ in particular JINR involved in µ+µ- decays with b-jets (CMS AN-2016/360, updated January 2018)
- Since Run2 started Higgs bosons is used for
- ✓ optimization of new calorimetry segmentation (TT decays)
- ✓ to looks for new physics

M. Savina, "JINR Participation in Compact Muon Solenoid at the LHC", JINR PAC, January 31, 2018

see a talk for Upgrade
 of the CMS detector
 by A. Zarubin

Observables:

- ✓ quark/gluon jet fractions;
- ✓ distributions of jets vs. charged-particle multiplicity (CPM) in jet;
- ✓ correlation moments of jet CPM distributions;
- ✓ density of underline event (UE).

Methodology:

- ✓ Extraction of q/g-jet fraction by q/g-discriminators;
- Correction of measured mean jet CPM (pile up jets, lost jets, low energy tracks, jet energy scale, UE density in jets);
- ✓ Unfolding of jet CPM distribution (correction for lost/fake tracks);
- ✓ Jet flavour identification, jet flavour non-universality;
- ✓ Statistical methods.

Channels:

- ✓ semi-leptonic $t\bar{t}$ -channel (Run-I, finished in 2017);
- ✓ dijets, gamma/Z/W+jet (Run-II, plan).

Measured observables are sensitive to :

- ✓ pQCD order,
- \checkmark color correlations,
- ✓ sub-structure of jets,
- \checkmark models of hadronization.

+ 1 MSc (from Minsk)

M. Savina, "JINR Participation in Compact Muon Solenoid at the LHC", JINR PAC, January 31, 2018

Data analysis

New physics beyond the Standard model: TeV-scale gravity models and Extended gauge sector

M = 2.2 TeV Muons: $p_T = 1, 0.7 \text{ TeV}, \eta = -1.36, 0.49$

Quantum Black Holes & String Balls. M. Savina, "JINR Participation in Compact Muon Solenoid at the LHC", JINR PAC, January 31, 2018

do/dM (pb/GeV)

10

10

10

dơ/dM_{inv}, pb/30GeV

TeV-scale Gravity: virtual exchange, contribution to Drell-Yan

Effective field theory description, exchange by graviton KK-modes

$$\mathcal{M}_{4f}(\tilde{h}) = -\frac{\kappa^2}{16} D(\hat{s}) \left[(k_1 + k_2) \cdot (q_1 + q_2) \overline{f}_2 \gamma^{\mu} f_2 \ \overline{f}_1 \gamma_{\mu} f_1 \right] \\ + \overline{f}_2(k_1 + k_2) f_2 \overline{f}_1(q_1 + q_2) f_1 - \frac{8}{3} m_{f_1} m_{f_2} \overline{f}_2 f_2 \overline{f}_1 f_1 \right]$$

Effective description has a validity range of the model: $\sqrt{\hat{s}_{max}} \lesssim M_S \sim M_D$

DY differential cross section with graviton exchange included:

$$\frac{d^3\sigma}{dM_{\ell\ell}dydcos\theta^{\star}} = K\left(S_0 + \frac{\mathcal{F}}{M_S^4}S_4 + \left(\frac{\mathcal{F}}{M_S^4}\right)^2 S_8\right)$$
$$M_S^2 \gg \hat{s}, |\hat{t}|, |\hat{u}| \quad \hat{s} = M_{\ell\ell}^2, \ x_{1,2} = \frac{M_{\ell\ell}}{\sqrt{s}}e^{\pm y},$$

Z' from Extended Gauge Sector

Extended gauge models based on GUT E6 or SO(10) theories or Left-Right Symmetric Models 2.9 fb⁻¹ (13 TeV (LRM) Events / Ge/ Data CMS dimuon $\gamma^*/Z \rightarrow \mu^+\mu^ A_{ij} \equiv A(f\bar{f} \to l^{+}l^{-}) = -Qe^{2} + \frac{\bar{s}}{\hat{s} - M_{Z}^{2} + iM_{Z}\Gamma_{Z}}C_{i}^{Z}(f)C_{j}^{Z}(l) + \frac{\bar{s}}{\hat{s} - M_{Z}^{2} + iM_{Z}^{2}}C_{i}^{Z}(f)C_{j}^{Z}(l) + \frac{\bar{s}}{\hat{s} - M_{Z}^{2} + iM_{Z}^{2}}C_{j}^{Z}(f)C_{j}^{Z}(l) + \frac{\bar{s}}{\hat{s} - M_{Z}^{2} + iM_{Z}^{2}}C_{j}^{Z}(l) + \frac{\bar{s}}{\hat{s} - M_{Z}^{2} + iM_{Z}^{2}}C_{j}^{Z$ 10^{3} tt, single top WW, WZ, ZZ, ττ, W+jets Narrow Z' $(M_{-} = 2 \text{ TeV})$ $+ \frac{s}{\hat{s} - M_{Z'}^2 + iM_{Z'}\Gamma_{Z'}} C_i^{Z'}(f) C_j^{Z'},$ Full interference with Z⁰ at the amplitude level 2.5 1. η , ψ and χ EGS models: 1.5 Data 1.0 0.5 $E_6 \rightarrow SO(10) \times U(1)_{\psi} \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$ 0.0 -0.5 70 2000 3000 m(µ⁺µ⁻) [GeV] 100 200 300 400 1000 $\left|g_{Z^0}\left(\frac{g_{Z'}}{q_{Z^0}}\right)\left(Q_{\chi}\cos\theta_{E_6} + Q_{\psi}\sin\theta_{E_6}\right)\right| - \frac{\pi}{2} \le \Theta_{E_6} \le \frac{\pi}{2}$ 12.4 fb⁻¹ (13 TeV, ee) + 13.0 fb⁻¹ (13 TeV, μμ) $\rightarrow ll+X) / \sigma(pp \rightarrow Z+X \rightarrow ll+X)$ CMS oserved 95% CL limit Preliminary Expected 95% CL limit, median Expected 95% CL limit, 1 s.d. Expected 95% CL limit, 2 s.d. Z'_w (LOx1.3) 2. LRM and ALRM EGS models: --- Z'_{SSM} (LOx1.3) $SO(10) \rightarrow SU(3) \times SU(2)_L \times SU(1)_R \times U(1)_{B-L}$ σ(pp→Z'+X-ס $= \left[\sin\theta_W T_{3L} + \kappa (1 - \sin\theta_W) T_{3R} - \sin\theta_W Q\right]$ g_{Z^0} $(1+\kappa)\sin\theta_W$ 4500 1000 2500 3000 3500 4000 M [GeV]

1 MSc (from JINR)

Z' with standard-model-like couplings can be excluded below 4.0 TeV, the superstring-inspired Z' below 3.5 TeV

M. Savina, "JINR Participation in Comp

13

In large extra dimension models

- M_D is not a Planckian but it is about of a few TeV reachible at the LHC
- Gravity stronger at small distances (in a full multidimensional space)
- Horizon radius of multi-D BH is larger, for M ~ TeV it increases from 10⁻³⁸ fm (4-D black holes) to 10⁻⁴ fm (multi-D black holes) – can be observed

Multidimensional microscopic black hole formation

 $b < 2r_h(n, M, J)$ For BHs with $R_h << R$ they are pure multidimensional objects which have approximately higher dimensional spherical $2R_{H}$ symmetry BlackMax, BH5, n=6 M_n (TeV) * 1.5 Differential cross section of BH production $\sigma_{BH} = \pi r_S^2$. ▲ 2 2.5 3 3.5 $\frac{d\sigma(pp \to BH + X)}{dM_{BH}} = \frac{dL}{dM_{BH}} \hat{\sigma}(ij \xrightarrow{\checkmark} BH)|_{\hat{s}=M_{BH}^2}$ ∆ 4 4.5 The Dubna group * 5 calculations 5.5 for the CMS analyses 6.5 $\frac{dL}{dM_{BH}} = \frac{2M_{BH}}{s} \sum_{i,j} \int_{M_{BH}^2/s}^1 \frac{dx_i}{x_i} f_i(x) f_j\left(\frac{M_{BH}^2}{sx_i}\right)$ minimum of BH mass (TeV)

Phys. Lett. B 774 (2017) 279

BH production

8 physically different scenarios used, more then 750 signal samples to scan the parameter space

The JINR group participates in this CMS analyses (and initiates this work in part) since 2009.

1 PhD St + 1 MSc (from JINR)

The discriminating variable between a signal and a dominant QCD multijet background is the scalar sum of the transverse energies of all reconstructed objects in the event, S_{T}

Data: multiplicity ≥ 3

Background from data

 $M_{D} = 6 \text{ TeV}, M_{OBH} = 6 \text{ TeV}, n = 6$

 $M_D = 7 \text{ TeV}, M_{OBH} = 7 \text{ TeV}, n = 6$

2.3 fb⁻¹ (13 TeV)

Jets, photons and leptons, $E_{T} > 50 \text{ GeV},$ missing $E_T > 50 \text{ GeV}$

Upper limits at 95% CL on the multijet production cross section: $N \ge 2-11$

2.3 fb⁻¹ (13 TeV)

M. Savina, "JINR Participation in Compact Muon Solenoid at the LHC", JINR PAC, January 31, 2018

Te<

Events/0.1

Fit)/Fit

Data

CMS

S^{min}_T (TeV)

Black Holes: New Limits @ 13 TeV

Phys. Lett. B 774 (2017) 279

- we exclude minimum semiclassical BHs masses below
 7.0–9.5 TeV
- ✓ lower limits on the minimum quantum BH mass span the 7.3–9.0 TeV range for the ADD (n >2) and 5.1–6.2 TeV range for the RS1 (n=1)
- ✓ for the case of the string balls, the mass exclusion limits reach 8.0-8.5 TeV

Use Charybdis, BlackMax, QBH generators to realize the different theoretical scenarios

Results (Black Holes and Sphaleron) for 35 .9 fb⁻¹ is ready, collaboration approval is in progress

1 PhD + 1 MSc (from JINR) +1 PhD + 1 MSc (from Erevan)

The development of the CMS experiments data processing system is developed in parallel with the Physics and Upgrade Programs.

- It is necessary to provide the experiments with the long-term storage petabytes of data and the facility to process and analyze the data.
- The JINR are actively involved in study, utilization, and development of both the Tier-1 and Tier-2 sites to ensure full-scale participation in CMS data processing and analysis for the JINR physicists, JINR Member States, and whole RDMS CMS Collaboration.

2015-2017 data @ 13TeV (up to ~ 2-13 fb-1)

- Search for High-Mass Resonances Decaying to Dilepton Pairs in pp Collisions at 13 TeV (Phys. Lett. B 768 (2017) 57, CMS AN-2016/391, Oct. 2017)
- Search for Microscopic Black Holes at 13 TeV (Phys. Lett. B 774 (2017) 279)
- Drell-Yan pair production: x-sections, AFB etc. (CMS AN-2017/155)
- Higgs μ + μ decays with b-jets (CMS AN-2016/360, updated January 2018)

Above 163 papers were published in J. High Energy Phys, Phys. Rev. Lett., Phys. Lett. B, Eur. Phys. J. based on data of Run1-Run2

18 authors from JINR (4 PhDs) + 11 from DMS
5 public papers and 2 CMS PAS
6 review papers
18 talks for the CMS (5 talks by the PhD stud.)
1 PhD thesis

2012 data @ 8TeV analyses were fully completed (up to ~ 20 fb-1)

 except for charged-particle multiplicities in quark and gluon jets at 8 TeV (not approved yet)

The CMS analyses based on 2015-2017 data are almost completed

~ 167 papers are published or submitted to publish, many analyses are going to be public

JINR participation in the CMS is very successful: JINR physicists are involved in whole CMS chain from data taking (shifts) and to final data analysis

- ✓ we contributed in six CMS physics analyses
 - 5 CMS public papers
 - 6 review papers
 - 18 talks for CMS
- ✓ young physicists are involved actively
- The first-priority JINR physics tasks include longterm campaigns to look for new physics with
 - ✓ Di-muons (since 2002)
 - ✓ Multijet studies (since 2009)

In 2018 (and beyond) we expect plenty of results on 13 TeV beams with above 100 fb⁻¹!

Thank you for your attention!

Backup Slides

Основные формулы для ЧД

Для случая ADD $r_{S(h)} < R_c$ (R.C. Myers and M.J. Perry, Ann. Phys. 172, 304, 1986) $r_h^{(n)} = \left\lfloor \frac{\mu}{1 + (a/r_h^{(n)})^2} \right\rfloor^{n+1} = \frac{r_s^{(n)}}{\left\lceil 1 + (a/r_h^{(n)})^2 \right\rceil^{\frac{1}{n+1}}}.$ Для случая RS1 при условии $r_S \ll 1/ke^{-kr_c}$ $r_{s}^{(n)} \equiv \mu^{1/(n+1)}$ $r_S^{(n)}(\sqrt{\hat{s}}, n, M_D) = f(n)M_D^{-1}[\sqrt{\hat{s}}/M_D]^{1/(n+1)},$ $\sqrt{\hat{s}} = M_{BH}$ $\tilde{M} < E < (M/k)^2 \tilde{M}$ $f(n) \equiv \left[2^n \pi^{(n-3)/2} \frac{\Gamma[(n+3)/2]}{n+2} \right]^{1/(n+1)}.$ $\sigma \sim E/ ilde{M}^3$ как для ADD с n=1. Дополнительные ограничения $\left| r_{\rm S} = \frac{1}{\sqrt{\pi}M_D} \left| \frac{M_{\rm BH}}{M_D} \left(\frac{8\Gamma(\frac{n+3}{2})}{n+2} \right) \right|^{n+1} \right|$ по энтропийным критериям для ЧД RS-типа (x_{min} > 16) $S_{\rm BH} = \frac{4\pi}{n+2} \left(\frac{M_{\rm BH}}{M_{\rm D}}\right)^{\frac{n+2}{n+1}} \left(\frac{2^n \pi^{\frac{n-3}{2}} \Gamma\left(\frac{n+3}{2}\right)}{n+2}\right)^{\frac{n+1}{2}} S = \frac{1+n}{2+n} \frac{M_{\rm BH}}{T_{\rm H}} \quad T_{\rm H} = M_{\rm D} \left(\frac{M_{\rm D}}{M_{\rm BH}} \frac{n+2}{8\Gamma\left(\frac{n+3}{2}\right)}\right)^{\frac{n+1}{2}} \times \frac{n+1}{4\sqrt{\pi}} = \frac{n+1}{4\pi r_{\rm S}}$ 22

Шварцшильдовский радиус

$$r_{S} = \frac{1}{\sqrt{\pi}M_{D}} \left[\frac{M_{\rm BH}}{M_{D}} \left(\frac{8\Gamma(\frac{n+3}{2})}{n+2} \right) \right]^{\frac{1}{n+1}}$$

 $\sigma_{BH} = \pi r_S{}^2$

– классический непертурбативный процесс

В предположении, что вся начальная энергия столкновения удержана под горизонтом

$$\frac{d\sigma(pp \to BH + X)}{dM_{BH}} = \frac{dL}{dM_{BH}}\hat{\sigma}(ij \to BH)|_{\hat{s}=M_{BH}^2}$$

$$\frac{dL}{dM_{BH}} = \frac{2M_{BH}}{s} \sum_{i,j} \int_{M_{BH}^2/s}^1 \frac{dx_i}{x_i} f_i(x) f_j\left(\frac{M_{BH}^2}{sx_i}\right)$$

 $\hat{s} = x_i x_j s_i$

Evolution Stages for BH

I. Balding phase

Asymmetric production, but "No hair" theorem: BH sheds its high multipole moments for fields (graviton and GB emitting classically), as electric charge and color. Characteristic time is about t ~ R_s Result: BH are classically stable objects

II-III. Hawking radiation phases (short spin down + more longer Schwarzschild)

Quantum-mechanical decay trough tunneling, transition from Kerr spinning BH to stationary Schwarzschild one. angular momentum shedding.

After this – thermal decay to all SM particles with black body energy spectra. Accelerating decay with a varying growing temperature. No flavor dependence, only number of D.o.f.– "democratic" decay Correction with Gray Body Factors

IV. Planck phase: final explosion (subj for QGr) BH remnant (non-detectable energy losses), N-body decay, Q, B, color are conserved or not conserved ²⁴