

Helmholtz International School "Modern Colliders - Theory and Experiment 2018" and Workshop "Calculations for Modern and Future Colliders (CALC2018)"

On the Renormalization in Maximally Supersymmetric Gauge Theories

Arthur Borlakov

in collaboration with D. Kazakov, D. Tolkachev and D. Vlasenko

Dubna 2018

Introduction

Characteristics

Maximal SYM

D=4 N=4

D=6 N=2

D=8 N=1

D=10 N=1

D=4 N=8 Supergravity

- Partial or total cancelation of UV divergencies
 First UV divergent diagrams arise on L=6/(D-4)
 Common structure of integrands
 Conformal or dual conformal symmetry
 - On-shell finite up to 8 loops
 - Similar to higher dim SYM

The coupling
$$g^2$$
 has dimension $[g^2] = rac{1}{M^{D-4}}$

The aim: to get all loop exact result at least for the leading divergencies

Z.Bern, L.Dixon 10 J.M.Drummond, J.Henn, G.P.Korchemsky, E.Sokatchev 10 N.Arkani-Hamed 12

Introduction

Spinor-helicity formalism

 $\begin{aligned} k_{i}^{\mu} \rightarrow k_{i}^{\mu} (\sigma_{\mu})_{\alpha\dot{\alpha}} &= (\lambda_{i})_{\alpha} (\tilde{\lambda}_{i})_{\dot{\alpha}} & \lambda_{\alpha} \in SL(2, C) \\ \langle ij \rangle &\equiv \varepsilon^{\alpha\beta} (\lambda_{i})_{\alpha} (\lambda_{i})_{\beta} & [ij] &= \langle ij \rangle^{*} \\ [ij] &\equiv \varepsilon^{\dot{\alpha}\dot{\beta}} (\tilde{\lambda}_{i})_{\dot{\alpha}} (\tilde{\lambda}_{i})_{\dot{\beta}} & (\sigma^{\mu})_{\alpha\dot{\alpha}} (\sigma_{\mu})^{\beta\dot{\beta}} &= 2\delta_{\alpha}^{\beta} \delta_{\dot{\alpha}}^{\dot{\beta}} \end{aligned}$

Lorentz invariant relation: $\langle ij \rangle [ij] = 2k_i k_j \equiv s_{ij}$

The object: 4-point helicity amplitudes on mass shell

Parke-Taylor formula:
$$A_n[1^+ \dots i^- \dots j^- \dots n^+] = \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle n1 \rangle}$$

 $\left| A_4^{(0)} \right|^2 = A_4^{(0)} A_4^{(0)^*} = \frac{s_{34}^3}{s_{12} s_{23} s_{41}} = \frac{s^2}{t^2}$

L.Dixon 13 H.Eivang, Y.Huang 13

Introduction

Universal expansion for any D in maximal SYM due to dual conformal invariance

T.Dennen, Y.Huang 10 S.Caron-Huot, D.O'Connell 10

R - operation and Recurrence Relations

 In renormalizable theories the leading divergences can be found from the 1-loop term due to the renormalization group, in particular, for a single coupling theory the coefficient of 1/eⁿ in n loops is

$$\mathcal{R}'G = \sum_{n} \frac{a_n^{(n)}}{\epsilon^n} \qquad a_n^{(n)} = (a_1^{(1)})^n$$

 In non-renormalizable theories the leading divergences can be also found from 1-loop due to locality and R-operation

$$\begin{split} \mathcal{R}'G &= 1 - \sum_{\gamma} K \mathcal{R}'_{\gamma} + \sum_{\gamma,\gamma'} K \mathcal{R}'_{\gamma} K \mathcal{R}'_{\gamma'} - ..., \\ \mathcal{R}'G_n &= -\frac{A_n^{(n)}(\mu^2)^{n\epsilon}}{\epsilon^n} + \frac{A_{n-1}^{(n)}(\mu^2)^{(n-1)\epsilon}}{\epsilon^n} + ... + \frac{A_1^{(n)}(\mu^2)^{\epsilon}}{\epsilon^n} \\ \text{Leading pole} &+ \frac{B_n^{(n)}(\mu^2)^{n\epsilon}}{\epsilon^{n-1}} + \frac{B_{n-1}^{(n)}(\mu^2)^{(n-1)\epsilon}}{\epsilon^{n-1}} + ... + \frac{B_1^{(n)}(\mu^2)^{\epsilon}}{\epsilon^{n-1}} \\ &+ \text{lower order terms} \\ \text{SubLeading pole} & A_1^{(n)}, B_1^{(n)} & \text{1-loop graph} \\ B_2^{(n)} & \text{2-loop graph} \end{split}$$

R - operation and Recurrence Relations

 In non-renormalizable theories the leading divergences can be also found from 1-loop due to locality and R-operation

All terms like $(log\mu^2)^m/\epsilon^k$ should cancel

$$A_n^{(n)'} = (-1)^{n+1} A_n^{(n)} = \frac{A_1^{(n)}}{n},$$
$$B_n^{(n)'} = \left(\frac{2}{n(n-1)}B_2^{(n)} + \frac{2}{n}B_1^{(n)}\right)$$

Just like in renormalizable theories one can deduce the leading, subleading, etc divergencies from 1, 2, etc loop diagrams

D=8 N=1 Horizontal boxes $A_n^{(n)} = s^{n-1}A_n$ $nA_n = -\frac{2}{4!}A_{n-1} + \frac{2}{5!}\sum_{k=1}^{n-2}A_kA_{n-1-k}, \quad n \ge 3$ $A_1 = 1/6$ **1 loop box**

Summation

$$\Sigma_m(z) = \sum_{n=m}^{\infty} A_n(-z)^n$$

D=8 N=1 **Horizontal boxes** $A_n^{(n)} = s^{n-1}A_n$ $nA_n = -\frac{2}{4!}A_{n-1} + \frac{2}{5!}\sum_{k=1}^{n-2}A_kA_{n-1-k}, \quad n \ge 3$ $A_1 = 1/6$ **1 loop box**

Summation
$$\Sigma_m(z) = \sum_{n=m}^{\infty} A_n(z)$$

$$A_n(z) = \sum_{n=m} A_n(-z)^n$$

$$-\frac{d}{dz}\Sigma_3 = -\frac{2}{4!}\Sigma_2 + \frac{2}{5!}\Sigma_1\Sigma_1. \qquad \Sigma_3 = \Sigma_1 + A_1z - A_2z^2, \quad \Sigma_2 = \Sigma_1 + A_1z, \quad A_1 = \frac{1}{3!}, \quad A_2 = -\frac{1}{3!4!}$$

 $\Sigma_A \equiv \Sigma_1$ Diff eqn

$$\frac{d}{dz}\Sigma_A = -\frac{1}{3!} + \frac{2}{4!}\Sigma_A - \frac{2}{5!}\Sigma_A^2 \qquad z = g^2 s^2/\epsilon$$

Horizontal boxes

 $A_n^{(n)} = s^{n-1}A_n$

 $nA_n = -\frac{2}{4!}A_{n-1} + \frac{2}{5!}\sum_{k=1}^{n-2}A_kA_{n-1-k}, \quad n \ge 3$ $A_1 = 1/6$ **1 loop box**

Summation $\Sigma_m(z) = \sum_{n=m}^{\infty} A_n(-z)^n$

D=8 N=1

$$-\frac{d}{dz}\Sigma_3 = -\frac{2}{4!}\Sigma_2 + \frac{2}{5!}\Sigma_1\Sigma_1. \qquad \Sigma_3 = \Sigma_1 + A_1z - A_2z^2, \quad \Sigma_2 = \Sigma_1 + A_1z, \quad A_1 = \frac{1}{3!}, \quad A_2 = -\frac{1}{3!4!}$$

$$\Sigma_A \equiv \Sigma_1 \qquad \qquad {\rm Diff\,\, eqn} \qquad \qquad \frac{d}{dz} \Sigma_A = -\frac{1}{3!} + \frac{2}{4!} \Sigma_A - \frac{2}{5!} \Sigma_A^2 \qquad \qquad z = g^2 s^2/\epsilon$$

$$\Sigma_A(z) = -\sqrt{5/3} \frac{4\tan(z/(8\sqrt{15}))}{1-\tan(z/(8\sqrt{15}))\sqrt{5/3}} = \sqrt{10} \frac{\sin(z/(8\sqrt{15}))}{\sin(z/(8\sqrt{15})-z_0)}$$

Horizontal boxes

 $A_n^{(n)} = s^{n-1}A_n$

 $nA_n = -\frac{2}{4!}A_{n-1} + \frac{2}{5!}\sum_{k=1}^{n-2}A_kA_{n-1-k}, \quad n \ge 3$ $A_1 = 1/6$ **1 loop box**

Summation $\Sigma_m(z) = \sum_{n=m}^{\infty} A_n(-z)^n$

D=8 N=1

$$-\frac{d}{dz}\Sigma_3 = -\frac{2}{4!}\Sigma_2 + \frac{2}{5!}\Sigma_1\Sigma_1. \qquad \Sigma_3 = \Sigma_1 + A_1z - A_2z^2, \quad \Sigma_2 = \Sigma_1 + A_1z, \quad A_1 = \frac{1}{3!}, \quad A_2 = -\frac{1}{3!4!}$$

$$\Sigma_A \equiv \Sigma_1 \qquad \qquad {\rm Diff\,\, eqn} \qquad \qquad \frac{d}{dz} \Sigma_A = -\frac{1}{3!} + \frac{2}{4!} \Sigma_A - \frac{2}{5!} \Sigma_A^2 \qquad \qquad z = g^2 s^2/\epsilon$$

$$\Sigma_A(z) = -\sqrt{5/3} \frac{4\tan(z/(8\sqrt{15}))}{1-\tan(z/(8\sqrt{15}))\sqrt{5/3}} = \sqrt{10} \frac{\sin(z/(8\sqrt{15}))}{\sin(z/(8\sqrt{15})-z_0)}$$

$$\Sigma(z) = -(z/6 + z^2/144 + z^3/2880 + 7z^4/414720 + \dots) \qquad z_0 = \arcsin(\sqrt{3/8})$$

All Loop Recurrence Relation D=8 N=1

s-channel term

$$S_n(s,t)$$
 t-channel term $T_n(s,t)$ $T_n(s,t) = S_n(t,s)$

Exact relation for ALL diagrams

$$nS_{n}(s,t) = -2s^{2} \int_{0}^{1} dx \int_{0}^{x} dy \ y(1-x) \ (S_{n-1}(s,t') + T_{n-1}(s,t'))|_{t'=tx+yu}$$

+ $s^{4} \int_{0}^{1} dx \ x^{2}(1-x)^{2} \sum_{k=1}^{n-2} \sum_{p=0}^{2k-2} \frac{1}{p!(p+2)!} \ \frac{d^{p}}{dt'^{p}} (S_{k}(s,t') + T_{k}(s,t')) \times$
 $S_{1} = \frac{1}{12}, \ T_{1} = \frac{1}{12} \qquad \times \frac{d^{p}}{dt'^{p}} (S_{n-1-k}(s,t') + T_{n-1-k}(s,t'))|_{t'=-sx} \ (tsx(1-x))^{p}$

All Loop Recurrence Relation D=8 N=1

s-channel term

$$S_n(s,t)$$
 t-channel term $T_n(s,t)$ $T_n(s,t) = S_n(t,s)$

Exact relation for ALL diagrams

$$nS_{n}(s,t) = -2s^{2} \int_{0}^{1} dx \int_{0}^{x} dy \ y(1-x) \ (S_{n-1}(s,t') + T_{n-1}(s,t'))|_{t'=tx+yu}$$

+ $s^{4} \int_{0}^{1} dx \ x^{2}(1-x)^{2} \sum_{k=1}^{n-2} \sum_{p=0}^{2k-2} \frac{1}{p!(p+2)!} \ \frac{d^{p}}{dt'^{p}}(S_{k}(s,t') + T_{k}(s,t')) \times$
 $S_{1} = \frac{1}{12}, \ T_{1} = \frac{1}{12} \qquad \times \frac{d^{p}}{dt'^{p}}(S_{n-1-k}(s,t') + T_{n-1-k}(s,t'))|_{t'=-sx} \ (tsx(1-x))^{p}$

summation $\Sigma_3(s,t,z) = \Sigma_1(s,t,z) - S_2(s,t)z^2 + S_1(s,t)z, \ \Sigma_2(s,t,z) = \Sigma_1(s,t,z) + S_1(s,t)z$

All Loop Recurrence Relation D=8 N=1

s-channel term

$$S_n(s,t)$$
 t-channel term $T_n(s,t)$ $T_n(s,t) = S_n(t,s)$

Exact relation for ALL diagrams

$$nS_{n}(s,t) = -2s^{2} \int_{0}^{1} dx \int_{0}^{x} dy \ y(1-x) \ (S_{n-1}(s,t') + T_{n-1}(s,t'))|_{t'=tx+yu}$$

+ $s^{4} \int_{0}^{1} dx \ x^{2}(1-x)^{2} \sum_{k=1}^{n-2} \sum_{p=0}^{2k-2} \frac{1}{p!(p+2)!} \ \frac{d^{p}}{dt'^{p}} (S_{k}(s,t') + T_{k}(s,t')) \times$
 $S_{1} = \frac{1}{12}, \ T_{1} = \frac{1}{12} \qquad \times \frac{d^{p}}{dt'^{p}} (S_{n-1-k}(s,t') + T_{n-1-k}(s,t'))|_{t'=-sx} \ (tsx(1-x))^{p}$

summation $\Sigma_3(s, t, z) = \Sigma_1(s, t, z) - S_2(s, t)z^2 + S_1(s, t)z, \ \Sigma_2(s, t, z) = \Sigma_1(s, t, z) + S_1(s, t)z$ **Diff eqn**

$$\begin{split} &\frac{d}{dz}\Sigma(s,t,z) = -\frac{1}{12} + 2s^2 \int_0^1 dx \int_0^x dy \ y(1-x) \ (\Sigma(s,t',z) + \Sigma(t',s,z))|_{t'=tx+yu} \\ &-s^4 \int_0^1 dx \ x^2(1-x)^2 \sum_{p=0}^\infty \frac{1}{p!(p+2)!} (\frac{d^p}{dt'^p} (\Sigma(s,t',z) + \Sigma(t',s,z))|_{t'=-sx})^2 \ (tsx(1-x))^p. \end{split}$$

Solutions (leading order)

$$\begin{split} \Sigma_{sB}' &= \sum_{n=2}^{\infty} z^n B_{sn}' & \frac{d^2 \Sigma_{sB}'(z)}{dz^2} + f_1(z) \frac{d \Sigma_{sB}'(z)}{dz} + f_2(z) \Sigma_{sB}'(z) = f_3(z) \\ & \mathbf{Diff \ eqn} & f_1(z) = -\frac{1}{6} + \frac{\Sigma_A}{15}, \\ & f_2(z) = \frac{1}{80} - \frac{\Sigma_A}{360} + \frac{\Sigma_A^2}{600} + \frac{1}{15} \frac{d\Sigma_A}{dz}, \\ & f_3(z) = \frac{2321}{5!5!2} \Sigma_A + \frac{11}{1800} \Sigma_{tB}' - \frac{47}{5!45} \Sigma_A^2 - \frac{1}{5!72} \Sigma_A \Sigma_{tB}' + \frac{23}{6750} \Sigma_A^3 + \frac{1}{1200} \Sigma_A^2 \Sigma_{tB}' - \frac{19}{36} \frac{d\Sigma_A}{dz} - \frac{1}{15} \frac{d\Sigma_{tB}'}{dz} + \frac{23}{225} \frac{d\Sigma_A^2}{dz} + \frac{1}{30} \frac{d(\Sigma_A \Sigma_{tB}')}{dz} - \frac{3}{32} \end{split}$$

$$\begin{split} \Sigma'_{sB} &= \sum_{n=2}^{\infty} z^n B'_{sn} & \frac{d^2 \Sigma'_{sB}(z)}{dz^2} + f_1(z) \frac{d \Sigma'_{sB}(z)}{dz} + f_2(z) \Sigma'_{sB}(z) = f_3(z) \\ & \text{Diff eqn} & f_1(z) = -\frac{1}{6} + \frac{\Sigma_A}{15}, \\ & f_2(z) = \frac{1}{80} - \frac{\Sigma_A}{360} + \frac{\Sigma_A^2}{600} + \frac{1}{15} \frac{d\Sigma_A}{dz}, \\ & f_3(z) = \frac{2321}{5!5!2} \Sigma_A + \frac{11}{1800} \Sigma'_{tB} - \frac{47}{5!45} \Sigma_A^2 - \frac{1}{5!72} \Sigma_A \Sigma'_{tB} + \frac{23}{6750} \Sigma_A^3 + \frac{1}{1200} \Sigma_A^2 \Sigma'_{tB} \\ & -\frac{19}{36} \frac{d\Sigma_A}{dz} - \frac{1}{15} \frac{d\Sigma'_{tB}}{dz} + \frac{23}{225} \frac{d\Sigma_A^2}{dz} + \frac{1}{30} \frac{d(\Sigma_A \Sigma'_{tB})}{dz} - \frac{3}{32} \end{split}$$

Solution to Diff eqn

smooth monotonic function

$$\Sigma_{sB}'(z) = \frac{d\Sigma_A}{dz}u(z) \qquad u(z) = \int_0^z dy \int_0^y dx \frac{f_3(x)}{d\Sigma_A(x)/dx}$$

Solutions (subleading order)

Leading divs Σa 100 Σ_A 50 30 Ζ 25 5 10 20 -50Series: 20 terms -100Exact solution -150

Infinite number of poles

Solutions (subleading order)

Infinite number of poles

Solutions (subleading order)

Infinite number of poles at the same position

Scheme dependence

subleading case

$$A'_1 + B'_{s1} = \frac{1}{6\epsilon} (1 + c_1 \epsilon) \qquad \Delta \Sigma'_{sB} = c_1 z \frac{d\Sigma'_A}{dz}. \qquad \Longrightarrow \qquad z \to z(1 + c_1 \epsilon).$$

sub-subleading case

$$A'_{2} + B'_{2} = \frac{s}{3!4!\epsilon^{2}} \left(1 - \frac{5}{12}\epsilon + 2c_{1}\epsilon + c_{2}\epsilon^{2} \right) \qquad \Delta\Sigma'_{sC} = c_{2}z^{2}\frac{d\Sigma'_{A}}{dz}.$$

$$\longrightarrow \qquad z \to z(1 + c_{1}\epsilon) + z^{2}c_{2}\epsilon^{2}.$$

$$\Delta \Sigma'_{sC} = -c_1^2 \frac{z}{4!} \left(\frac{d \Sigma_A}{dz} - 12 \frac{d^2 \Sigma_A}{dz^2} \right) \qquad \Longrightarrow \qquad z \to z(1 + c_1 \epsilon) + z^2 (c_2 + c_1^2/4!) \epsilon^2$$

Scheme dependence

subleading case

$$A'_{1} + B'_{s1} = \frac{1}{6\epsilon} (1 + c_{1}\epsilon) \qquad \Delta \Sigma'_{sB} = c_{1}z \frac{d\Sigma'_{A}}{dz}. \qquad \longrightarrow \qquad z \to z(1 + c_{1}\epsilon).$$

sub-subleading case

$$A'_{2} + B'_{2} = \frac{s}{3!4!\epsilon^{2}} \left(1 - \frac{5}{12}\epsilon + 2c_{1}\epsilon + c_{2}\epsilon^{2} \right) \qquad \Delta \Sigma'_{sC} = c_{2}\epsilon^{2} \frac{d\Sigma'_{A}}{dz}.$$
$$\longrightarrow \qquad z \to z(1 + c_{1}\epsilon) + z^{2}c_{2}\epsilon^{2}.$$

$$\Delta \Sigma_{sC}' = -\underbrace{c_1^2 z_1'}_{4!} \left(\frac{d\Sigma_A'}{dz} - 12 \frac{d^2 \Sigma_A'}{dz^2} \right) \longrightarrow z \to z(1 + c_1 \epsilon) + z^2 (c_2 + \underbrace{c_1^2}_{4!} 4!) \epsilon^2$$

Finally
$$z \to z(1+c_1\epsilon) + z^2 \left(c_2 + c_1^2/4! + \frac{569}{3!4!5!}c_1 \right) \epsilon^2$$

Kinematically dependent renormalization

operator kinematically dependent renormalization

at 2 loops

$$\bar{A}_4 = 1 - \frac{g_B^2 st}{3!\epsilon} - \frac{g_B^4 st}{3!4!} \left(\frac{s^2 + t^2}{\epsilon^2} + \frac{27/4s^2 + 1/3st + 27/4t^2}{\epsilon} \right) + \dots$$

$$\bar{A}_4 = Z_4(g^2)\bar{A}_4^{bare}|_{g_{bare}^2 - > g^2 Z_4}$$

$$Z_4 = 1 + \frac{g^2 st}{3!\epsilon} + \frac{g^4 st}{3!4!} \left(-\frac{s^2 + t^2}{\epsilon^2} + \frac{5/12s^2 + 1/3st + 5/12t^2}{\epsilon} \right)$$

$$g_B^2 = g^2(1 + \frac{g^2}{3!\epsilon})$$

Kinematically dependent renormalization

Conclusions

- The recurrence relations allow to calculate the (sub)leading UV divergences algebraically starting from 1 and 2 loops
- The structure of UV in non-renormalizable theories essentially copies that of renormalizable one
- The main difference from renormalizable theories is that the coupling constant depends on kinematics and acts like operator

JHEP 1612 (2016) 154, arXiv:1610.05549v2 [hep-th] Phys.Rev. D95 (2017) no.4, 045006 arXiv: 1603.05501 [hep-th] arXiv:1712.04348 [hep-th], arXiv:1804.08387 [hep-th]

Thanks for the attention!