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GENERAL

The cross-sections σ, which studied at high-energy colliders as

LHC, can be represented (symbolically) as

σ = P ⊗ σ̂ ⊗D, (1)

with the Mellin convolution

A⊗B ≡ ∫ 1
x
dy

y
A(y)B











x

y











. (2)

Here σ̂ is perturbatively calculated (“hard”) parton-parton cross-

sections,

P are the parton distribution functions (PDFs) or parton luminoc-

ities (= Mellin convolution of two PDFs),

D are the fragmentation fanctions (FFs).



P and D are universal [= process-independent!!!] functions but

scheme-dependent ones (usually MS is used).

P [D] contains all information about the transformation hadrons to

(free) partons [(free) partons to hadrons, i.e. hadronization].

So, P and D are strongly dependent on strong interactions (of

quarks and gluons in hadrons) and, thus, they cannot be calcu-

lated in the framework of the perturbation theory. They (really,

their normalizations) should be taken from experiment.

P = P (x, µ2) and D = D(x, µ2), where x is Bjorken variable

(= ratio of parton momentum to hadron one in P

(and the corresponding ratio of hadron momentum to parton one

in D) and, thus, 0 ≤ x ≤ 1) and µ2 is some additional variable

(for example, in DIS µ2 = Q2 is the “mass” of photon).



At µ2 → ∞, P (x, µ2) → P (x) and D(x, µ2) → D(x), i.e. we

have Feynman Parton Model.

The evolution of D = D(x, µ2) [and P = P (x, µ2)] is perturba-

tively calculatable (DGLAP equations):

µ2
d

dµ2
D̂(x, µ2) = P̂ (x, µ2)⊗ D̂(x, µ2),

D̂(x, µ2) =

















Dq(x, µ
2)

Dg(x, µ
2)

















, P̂ (x, µ2) =

















Pqq(x, µ
2) Pqg(x, µ

2)

Pgq(x, µ
2) Pgg(x, µ

2)

















,

where P̂ is the matrix of the perturbative kernels, which are known

at 3-loop orders.



It is convenient to do the Mellin transform of above DGLAP ma-

trix equation. In Mellin moment space the corresponding DGLAP

equations become to be pure differential ones:

µ2
d

dµ2
D̂(N,µ2) = P̂ (N )D̂(N,µ2), A(N ) =

∫ 1
0 dx xN−1A(x) .

(3)

The important property is diagonalization of (3).

After diagonalization in both the parts there are two components:

“+” one and “−” one.



The “+” component contains singularities at N → 1 in the cor-

responding anomalous dimensions and coefficient functions (N is

Mellin moment number) and requires some resummations. Usually

the “+” component is the object of study (MLLA approach,

for example).

The “−” component is free of singularities at N → 1 in the

corresponding anomalous dimensions and coefficient functions. It

has very slow Q2-dependence (in both the considered cases).

!!! But it is strongly necessary for the agreement with experimental

data. !!!

Really, namely the absence in the past analyses of the “−” com-

ponent is resonable for a strong disagreement between theory and

experiment.



1. Average Multiplicities

• I present the rather old results (B.Bolzoni, B.A. Kniehl and

A.V.K., 2013) for gluon and quark average multiplicities, which

are motivated by recent progress in timelike small-x resumma-

tion obtained in the MS scheme. (C.-H.Korn, A. Vogt and

K.Yeats, 2012).

The results contain the next-to-next-to-leading-logarithmic (NNLL)

resummed expressions and depend on two nonperturbative pa-

rameters with clear and simple physical interpretations.

• I present the new results (B.A. Kniehl and A.V.K., 2017) for

gluon and quark average multiplicities.

The results contain a new SUSY-like relations between the cor-

responding anomalous dimensions (i.e. the first moments od

splitting functions).



•We did a global fit of these two quantities. Our results solved

a longstanding problem of QCD: a disagreement between the-

oretical predictions for the ration of gluon and quark average

multiplicities and the corresponding experimental data.

•We finally proposed also to use the multiplicity data as a new way

to extract the strong-coupling constant. We obtained α
(5)
s (Mz) =

0.1205± 0.0020 in the MS scheme in an approximation equiva-

lent to next-to-next-to-leading order (NNNLO) enhanced by the

resummations of lnx terms through the NNLL level, in excellent

agreement with the present world average.



2. Introduction

The computation of average jet multiplicities (i.e.

Da(N = 1, µ2), a = g, q) requires small-x resummation,

(A.H.Mueller, 1981). [Similar resummation was done in

(R. Kirschner and L.N. Lipatov, 1982)].

It was shown that the singularities for x ∼ 0, which are encoded in

large logarithms of the kind lnk(1/x)

(the k-th term in the perturbative theory contains

the terms like aks/ω
2k−1 in the Mellin space [hereafter

ω = N − 1])

and disappear after resummation. Usually, the resummation in-

cludes the singularities from all orders according to a certain loga-

rithmic accuracy, for which it restores perturbation theory.



Example, in the Mellin space, N is Mellin moment, ω = N − 1:

as











1

ω
+ Const











+ a2s











∼ 1

ω3
+ ...











+ a3s











∼ 1

ω5
+ ...











+ ...

→ as











1

ωeff
+ Const











LL-resummation,

as
ω

→ as
ωeff

=
as
ω

1
√

√

√

√

√1 + 8CAas
ω2

=
as

√

ω2 + 8CAas
→

√

√

√

√

√

√

√

as
8CA

(at ω → 0) ,

i.e.

ω → ωeff =
√

ω2 + 8CAas →
√

8CAas (at ω → 0) .

!!!So, after resummation we have perturbation the-

ory in the parameter
√
as, not as.!!!



There was also a strong disagreement between theory and exper-

iment. Indeed,

r ≡ Dg(0, µ
2)

Dq(0, µ2)
=

cA
cF

· (1 +O(as)) = 2.25 · (1 + O(as)) (4)

is equal to 2.25 at µ2 → ∞.

Experimental data show the results for r two times less.
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Figure 1: The average gluon-to-quark jet multiplicity ratio evaluated in the LO + NNLL (dashed/gray lines) and N3LO

(solid/orange lines) approximations using the corresponding fit results for 〈nh(Q
2
0)〉g and 〈nh(Q

2
0)〉q from Table ?? are compared

mental data. The experimental and theoretical uncertainties in the N3LOapprox+NLO+NNLL result are indicated by the shaded/orange

bands enclosed between the dot-dashed curves, respectively. The prediction given by analysis in (A.Capella, I.M.Dremin, J.W.Gary

and J. Tran Thanh Van, 2000) is indicated by the continuous/gray line.



3. Fragmentation functions and their evolution

The evolution of the fragmentation functions Da(x, µ
2) for the

gluon–quark-singlet system a = g, q. In Mellin space, is:

µ2
∂

∂µ2

















Dq(ω, µ
2)

Dg(ω, µ
2)

















=

















Pqq(ω, as) Pgq(ω, as)

Pqg(ω, as) Pgg(ω, as)

































Dq(ω, µ
2)

Dg(ω, µ
2)

















,

(5)

where Pij(ω, as), with i, j = g, q, are the timelike splitting func-

tions, ω = N−1, with N being the standard Mellin moments with

respect to x, and as(µ
2) = αs(µ)/(4π) is the couplant.



The standard definition of the hadron average multiplicities in

terms of the fragmentation functions is given by their integral over

x, which corresponds to the first Mellin moment, with ω = 0:

〈nh(Q2)〉a ≡




∫ 1
0 dx xωDa(x,Q

2)




ω=0
= Da(ω = 0, Q2) (6)

The timelike splitting functions Pij(ω, as) may be computed per-

turbatively in as,

Pij(ω, as) =
∞
∑

k=0
ak+1s P

(k)
ij (ω). (7)

The functions P
(k)
ij (ω) for k = 0, 1, 2 in the MS scheme may be

found through NNLO and with small-x resummation through NNLL

accuracy.



4. Diagonalization

Standard approach (B.Bolzoni, B.A. Kniehl and A.V.K., 2013)

(based on (A.J.Buras, 1980))

The usual approach is then to write a series expansion about

the leading-order (LO) solution, which can in turn be diagonalized.

One thus starts by choosing a basis in which the timelike-splitting-

function matrix is diagonal at LO

P (ω, as) =

















P++(ω, as) P−+(ω, as)

P+−(ω, as) P−−(ω, as)

















= as



















P
(0)
++(ω) 0

0 P
(0)
−−(ω)



















+ a2sP
(1)(ω) +O(a3s), (8)

with eigenvalues P
(0)
±±(ω).



It is convenient to represent the change of basis for the fragmen-

tation functions order by order for k ≥ 0:

D+(ω, µ20) = (1− αω)Ds(ω, µ
2
0)− ǫωDg(ω, µ

2
0),

D−(ω, µ20) = αωDs(ω, µ
2
0) + ǫωDg(ω, µ

2
0). (9)

This implies for the components of the timelike-splitting-function

matrix that

P
(k)
−−(ω) = αωP

(k)
qq (ω) + ǫωP

(k)
qg (ω) + βωP

(k)
gq (ω) + (1− αω)P

(k)
gg (ω),

P
(k)
−+(ω) = P

(k)
−−(ω)−











P (k)
qq (ω) +

1− αω
ǫω

P (k)
gq (ω)











,

P
(k)
++(ω) = P (k)

qq (ω) + P (k)
gg (ω)− P

(k)
−−(ω),

P
(k)
+−(ω) = P

(k)
++(ω)−











P (k)
qq (ω)− αω

ǫω
P (k)
gq (ω)











= P (k)
gg (ω)−











P
(k)
−−(ω)−

αω
ǫω

P (k)
gq (ω)











. (10)



The elements of the matrix for diagonalization (LO projectors

!!!)

αω =
P
(0)
qq (ω)− P

(0)
++(ω)

P
(0)
−−(ω)− P

(0)
++(ω)

, ǫω =
P
(0)
gq (ω)

P
(0)
−−(ω)− P

(0)
++(ω)

,

βω =
P
(0)
qg (ω)

P
(0)
−−(ω)− P

(0)
++(ω)

. (11)



NEW approach (B.A. Kniehl and A.V.K., 2017)

Now we work directly with multiplicities, i.e. with the first Mellin

moments Da(µ
2) ≡ Da(1, µ

2) a = q, g of the FFs Da(x, µ
2),

which in-turn obey the differential DGLAP equations in Mellin

space:

(Da(N,µ2) = ∫1
0 dx x

N−1Da(x, µ
2) with N = 1, 2, . . . and

similarly for Pba(x))

with Pba = Pba(N = 1, as(µ
2))

µ2d

dµ2

















Ds(µ
2)

Dg(µ
2)

















=

















Pqq Pgq

Pqg Pgg

































Ds(µ
2)

Dg(µ
2)

















, (12)

where Ds = (1/2nf )
∑

nf
q=1(Dq + Dq̄), with nf being the number

of active quark flavors, is the quark singlet component.

The quark non-singlet component, which is irrelevant for the fol-

lowing, obeys a decoupled DGLAP equation.



So, our starting point is Eq. (12) with NNLL resummation (with

very special forms for Pab with a 6= b)

Paa = γ0(δag +K(1)
a γ0 +K(2)

a γ20) + O(γ40), (a = q, g),

Pgq = C(Pgg + A) + O(γ40), C =
cF
cA

=
N2
c − 1

2N2
c

for SU(Nc) group

Pqg = C−1(Pqq + A) + O(γ40), (13)

where γ0 =
√
2CAas, with as = αs/(4π) being the couplant, δab

is the Kronecker symbol, and

K(1)
q =

2

3
Cϕ, K(2)

q = −1

6
Cϕ[17− 2ϕ(1− 2C)],

K(1)
g = − 1

12
[11 + 2ϕ(1 + 6C)], K(2)

g =
1193

288
− 2ζ(2)

− 5ϕ

72
(7− 38C) +

ϕ2

72
(1− 2C)(1− 18C),

A = K(1)
q γ20, ϕ =

2nfTR
CA

, TR =
1

2
. (14)



Eq. (13) is written in a form that allows us to glean a novel

relationship:

C−1Pgq − Pgg = CPqg − Pqq, (15)

which is independent of nf .

Eq. (15) generalizes the case of SUSY QCD (SQCD)

Pgq − Pgg = Pqg − Pqq, (16)

(Yu.L. Dokshitzer, 1977), (A.P. Bukhvostov, E.A. Kuraev, L.N. Li-

patov, G.V. Frolov, 1985) from C = 1 to C = 4/9.

Eq.(16) exists for any N (or x) values but Eq.(15) is

correct only at N = 1.



The relation (16) is known to be violated beyond LO in the stan-

dart dimensional regularization (DREG) scheme (but not in the

dimensional reduction (DRED) scheme).

It will be interesting to see if Eq. (15) also holds beyond O(γ30),

et least in the case of the schemes, which preserve

supersymmetry properties, such as the DRED.

In above consideration (at O(γ30)) the choice of a scheme is not

so important because a difference in the results of various schemes

is exactly canceled in Eq. (15).



We now solve Eq. (12) exactly by exploiting Eq. (15). To this

end, we diagonalize the NNLL DGLAP evolution kernel as

U−1

















Pqq Pgq

Pqg Pgg

















U =

















P−− 0

0 P++

















, (17)

by means of the matrices, which are as-dependent now (i.e.

Q2-dependent)

U =

















1 −1
1−α
ε

α
ε

















, U−1 =

















α ε

α− 1 ε

















, (18)

where

α =
Pqq − P++
P−− − P++

, ε =
Pgq

P−− − P++
, (19)

P±± =
1

2





Pqq + Pgg ±
√

√

√

√(Pqq − Pgg)2 + 4PqgPgq




 . (20)

An indication of the new SUSY-like relation is the absence
√
...

in the final results for P±±, i.e. (Pqq − Pgg)
2 + 4PqgPgq = (...)2



Owing to Eq. (15), the square root in Eq. (20) is exactly can-

celed, and we have simple expressions for P±±

P−− = −A, P++ = Pqq + Pgg + A, (21)

α =
Pgg + A

Pqq + Pgg + 2A
, ε = −Cα . (22)

!!! No
√
... in the final results (21) for P±±



Eq. (12) thus assumes the form

µ2d

dµ2

















D−
D+

















=

































P−− 0

0 P++

















− U−1µ
2d

dµ2
U

































D−
D+

















, (23)

where the second term contained within the square brackets stems

from the commutator of µ2d/dµ2 and U , and
















D−
D+

















= U−1

















Ds

Dg

















=

















αDs + εDg

(α− 1)Ds + εDg

















. (24)



After some little algebra we may cast Eq. (12) in its final form,

µ2d

dµ2

















D−
D+

















=

















Cϕβ0
3CA

γ30 − A 0
Cϕβ0
3CA

γ30 Pgg + Pqq + A

































D−
D+

















. (25)

The initial conditions are given by Eq. (24) for µ = µ0 in terms of

the three constants αs(µ
2
0), Ds(µ

2
0), and Dg(µ

2
0).

The solution of Eq. (25) is greatly facilitated by the fact that one

entry of the matrix on its right-hand side is zero.



We may thus obtainD− as the general solution of a homogeneous

differential equation,

D−(µ2)
D−(µ20)

= exp















∫ µ2

µ20

dµ̄2

µ̄2











Cϕβ0
3CA

γ30 − A

























=
T−(γ0(µ2))
T−(γ0(µ20))

, (26)

where

T−(γ0) = exp











4Cϕ

3

∫

dγ0











2CA

β0γ0
− 1





















= γ
d−
0 exp











−4

3
Cϕγ0











, (27)

with d− = 8CACϕ/(3β0). The small-x correction∝ γ0 in Eq. (27)

originates from the extra term in Eq. (23) and represents a novel

feature of our approach.

D−(µ2) has slow µ2-dependence.



We are then left with an inhomogeneous differential equation for

D+. The general solution D̃+ of its homogeneous part reads

D̃+(µ
2)

D̃+(µ20)
= exp















∫ µ2

µ20

dµ̄2

µ̄2
γ0





1 +K
(1)
+ γ0 +K

(2)
+ γ20





















=
T+(γ0(µ

2))

T+(γ0(µ
2
0))

,

where

K
(1)
+ = 2K(1)

q +K(1)
g = − 1

12
[11 + 2ϕ(1− 2C)],

K
(2)
+ = K(2)

q +K(2)
g =

1193

288
− 2ζ(2)− 7ϕ

72
(5 + 2C)

+
ϕ2

72
(1− 2C)(1 + 6C),

T+(γ0) = γ
d+
0 exp











4CA

β0γ0
− 4CA

β0





K
(2)
+ − b1





 γ0











, (28)

with d+ = −4CAK
(1)
+ /β0 and b1 = β1/(2CAβ0).



Adding to D̃+ a special solution of the inhomogeneous differential

equation for D+, we find its general solution to be

D+(µ
2) =















D+(µ
2
0)

T+(γ0(µ
2
0))

− 4

3
Cϕ

D−(µ20)
T−(γ0(µ20))

(29)

× ∫ γ0(µ
2)

γ0(µ
2
0)

dγ0
1 + b1γ

2
0

T−(γ0)
T+(γ0)













T+(γ0(µ
2)).

The final expressions for D− and D+ in Eqs. (26) and (29), re-

spectively, are fully renormalization group improved because all µ

dependence resides in γ0.

D+(µ
2) has strong µ2-dependence.



Using Eqs. (18) and (24), we now return to the parton basis,

where it is useful to decompose Da = D+
a +D−

a into the large and

small components D±
a proportional to D±, respectively. Defining

r± = D±
g /D

±
s and using Eqs. (13), (14), and (22), we then have

D±
s = ∓D± and

r+ = −α

ǫ
=

1

C
+ O(γ20), (30)

r− =
1− α

ǫ
= −4

3
ϕγ0 +

ϕ

18
[29− 2ϕ(5− 2C)]γ20 + O(γ30).

Recalling that 〈nh〉q = Ds and 〈nh〉g = Dg, we thus have

r =
r+D

+
s + r−D−

s

D+
s +D−

s
=

r+ + r−D−
s /D

+
s

1 +D−
s /D

+
s

. (31)



7. Analysis

We are now in a position to perform a global fit to the available

experimental data of our formulas and to extract the nonperturba-

tive constants Dg(Q
2
0) and Ds(Q

2
0).

We have to make a choice for the scale Q0, which, in principle,

is arbitrary. The perturbative series appears to be more rapidly

converging at relatively large values of Q0. Therefore, we adopt

Q0 = 50 GeV in the following.

We included the measurements of average gluon jet multiplicities

and those of average quark jet multiplicities, which include 27 and

51 experimental data points, respectively. The errors correspond to

90% CL as explained above. All these fit results are in agreement

with the experimental data.
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Figure 2: The average gluon (upper curves) and quark (lower curves) jet multiplicities evaluated, respectively, in the LO + NNLL (dashed/gray

lines) and N3LOapprox+NLO+NNLL (solid/orange lines) approximations using the corresponding fit results for 〈nh(Q
2
0)〉g and 〈nh(Q

2
0)〉q are compared

with the experimental data included in the fits. The experimental and theoretical uncertainties in the N3LOapprox+NLO+NNLL results are indicated

by the shaded/orange bands and the bands enclosed between the dot-dashed curves, respectively.

In Fig. 2, we show as functions of Q the average gluon and quark

jet multiplicities evaluated at LO+NNLL and N3LOapprox+NLO+NNLL

using the corresponding fit results for 〈nh(Q2
0)〉g and 〈nh(Q2

0)〉q at
Q0 = 50 GeV.



• The fit of quark average multiplicity is good because minus com-
ponent: there is the additional contribution with the additional

free parameter Ds(Q
2
0).

The quark-singlet minus component comes with an arbitrary

normalization and has a slow Q2 dependence. Consequently,

its numerical contribution may be approximately mimicked by a

constant introduced to the average quark jet multiplicity as in

(P.Abreu et al. [DELPHI Collab.], 1998)

•We can compare our results with the data for the ratio of the

gluon and quark average multiplicities. It is not a fit because all

our parameters have been already fixed.
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Figure 3: The average gluon-to-quark jet multiplicity ratio evaluated in the LO + NNLL (dashed/gray lines) and N3LO

(solid/orange lines) approximations using the corresponding fit results for 〈nh(Q
2
0)〉g and 〈nh(Q

2
0)〉q from Table ?? are compared

mental data. The experimental and theoretical uncertainties in the N3LOapprox+NLO+NNLL result are indicated by the shaded/orange

bands enclosed between the dot-dashed curves, respectively. The prediction given by analysis in (A.Capella, I.M.Dremin, J.W.Gary

and J. Tran Thanh Van, 2000) is indicated by the continuous/gray line.



9. Conclusion

• Prior to our 2013 analyses, experimental data on

the average gluon and quark jet multiplicities could

not be simultaneously described in a satisfactory

way mainly because the theoretical formalism failed to account

for the difference in hadronic contents between gluon and quark

jets, although the convergence of perturbation theory seemed to

be well under control.

• This problem was solved by including the minus

components governed by T̂ res− (0, Q2, Q2
0). The quark-

singlet minus component comes with an arbitrary normalization

and has a slowQ2 dependence: its numerical contribution

may be approximately mimicked by a constant as

it was in (P.Abreu et al. [DELPHI Collab.], 1998).



• In our 2017 analysis, we have observed the new SUSY-like rela-

tion between the anomalous dimensions of the gluon and quark

multiplicities.

•Motivated by the goodness of our fits with fixed value of α
(5)
s (m2

Z)

here, we then included α
(5)
s (m2

Z) among the fit parameters,

which yielded a further reduction of χ2dof. The obtained value

α
(5)
s (m2

Z) = 0.1205± 0.0020 is close to the world average one.

Next steps:

• To add a2s ∼ γ40 correction to our analyses, which will be in-

clude N3LL resummation, and to see the (type of the) possible

violation the new SUSY-like relation between the anomalous di-

mensions.


