

Higgs Physics

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

Dubna, 07/2018

- 1. Before the Higgs discovery
- 2. The Higgs sector of the SM
- **3**. The Higgs sector of the (N)MSSM
- 4. Higgs boson(s) at the LHC

Higgs Physics

Before the Higgs Discovery

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

Dubna, 07/2018

1. Why Higgs?

- 2. Higgs mass predictions before the LHC
- 3. Electroweak Precision Observables (EWPO)

1. Why Higgs?

Standard Model (SM) of the electroweak and strong interaction

SM: Quantum field theory \Rightarrow interaction: exchange of field quanta

Construction principle of the SM: gauge invariance

Example: Quantum electro-dynamics (QED) field quanta: photon A_{μ}

 \mathcal{L}_{QED} invariant under gauge transformation:

 $\Psi \to e^{i e \lambda(x)} \Psi, \ A_{\mu} \to A_{\mu} + \partial_{\mu} \lambda(x)$

mass term for photon: $m^2 A^{\mu} A_{\mu}$ not gauge invariant $\Rightarrow A_{\mu}$ is massless gauge field

 \Rightarrow all particles experimentally seen (as of 2011)

 \Rightarrow all particles experimentally seen (as of 2011)

 \Rightarrow but it predicts massless gauge bosons . . .

Problem:

Gauge fields Z, W^+ , W^- are massive

explicite mass terms in the Lagrangian \Leftrightarrow breaking of gauge invariance

Solution: Higgs mechanism

scalar field postulated, mass terms from coupling to Higgs field

Higgs sector in the Standard Model:

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix} \quad (unitary gauge)$$

H: elementary scalar field, <u>Higgs boson</u>

Lagrange density:

$$\mathcal{L}_{\text{Higgs}} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - g_d \bar{Q}_L \Phi d_R - g_u \bar{Q}_L \Phi_c u_R - V(\Phi)$$

with

$$iD_{\mu} = i\partial_{\mu} - g_{2}\vec{I}\vec{W}_{\mu} - g_{1}YB_{\mu}$$

$$\Phi_{c} = i\sigma_{2}\Phi^{*} \qquad Q_{L} \sim \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix}, \ \Phi \sim \begin{pmatrix} 0 \\ v \end{pmatrix}, \ \Phi_{c} \sim \begin{pmatrix} v \\ 0 \end{pmatrix}$$

Gauge invariant coupling to gauge fields

 \Rightarrow mass terms for gauge bosons and fermions

$$V \longrightarrow \cdots + \cdots$$

$$\frac{1}{q^2} \to \frac{1}{q^2} + \sum_j \frac{1}{q^2} \left[\left(\frac{gv}{\sqrt{2}} \right)^2 \frac{1}{q^2} \right]^j = \frac{1}{q^2 - M^2} : M^2 = g^2 \frac{v^2}{2} \quad \Rightarrow M \propto g$$

2.) fermion mass terms: Yukawa couplings:

3.) mass of the Higgs boson: self coupling

3.) mass of the Higgs boson: self coupling

 \rightarrow last unknown (now measured) parameter of the SM

 \Rightarrow establish Higgs mechanism \equiv find the Higgs \oplus measure its couplings

Another effect of the Higgs field:

Scattering of longitudinal W bosons: $W_L W_L \rightarrow W_L W_L$

 \Rightarrow violation of unitarity

Contribution of a scalar particle with couplings prop. to the mass:

$$\mathcal{M}_{S} = \underbrace{\mathcal{M}_{V}}_{W} + \underbrace{\mathcal{M}_{W}}_{W} + \underbrace{\mathcal{M}_{W}}_{W} + \mathcal{O}(1)$$

for $E \to \infty$
$$\mathcal{M}_{tot} = \mathcal{M}_{V} + \mathcal{M}_{S} = \frac{E^{2}}{M_{W}^{4}} \left(g_{WWH}^{2} - g^{2}M_{W}^{2}\right) + \dots$$

 \Rightarrow compensation of terms with bad high-energy behavior for

 $g_{WWH} = g M_W$

Cross section with/without the Higgs:

[taken from M. Schumacher '12 / C. Englert]

Sven Heinemeyer – Higgs lectures @ CALC18 (Dubna) 30.07.2018

2. Higgs mass predictions before the LHC

Renormalization group equation:

$$\frac{d\lambda}{dt} = \frac{3}{8\pi^2} \left[\lambda^2 + \lambda g_t^2 - g_t^4 + \frac{1}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right] , \quad t = \log\left(\frac{Q^2}{v^2}\right)$$

Two conditions:

- 1.) avoid Landau pole (for large $\lambda \sim M_H^2$)
- 2.) avoid vacuum instability (for small/negative λ)

1.) avoid Landau pole (for large $\lambda \sim M_H^2$)

$$\frac{d\lambda}{dt} = \frac{3}{8\pi^2} \left[\lambda^2\right]$$

$$\Rightarrow \quad \lambda(Q^2) = \frac{\lambda(v^2)}{1 - \frac{3\lambda(v^2)}{8\pi^2} \log\left(\frac{Q^2}{v^2}\right)}$$

$$\lambda(\Lambda) < \infty \Rightarrow M_H^2 \le \frac{8\pi^2 v^2}{3\log\left(\frac{\Lambda^2}{v^2}\right)}$$
 : upper bound on M_H

2.) avoid vacuum instability (for small/negative λ): $V(v) < V(0) \Rightarrow \lambda(\Lambda) > 0$

$$\begin{aligned} \frac{d\,\lambda}{d\,t} &= \frac{3}{8\,\pi^2} \left[-g_t^4 + \frac{1}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right] \\ \Rightarrow \quad \lambda(Q^2) &= \lambda(v^2) \frac{3}{8\,\pi^2} \left[-g_t^4 + \frac{1}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right] \log\left(\frac{Q^2}{v^2}\right) \\ \lambda(\Lambda) > 0 \;\Rightarrow\; M_H^2 > \frac{v^2}{4\,\pi^2} \left[-g_t^4 + \frac{1}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right] \log\left(\frac{\Lambda^2}{v^2}\right) : \text{ lower bound} \end{aligned}$$

Both limits combined:

 $\Lambda:$ scale up to which the SM is valid

 $\Lambda = M_{\rm GUT} \Rightarrow$ 130 GeV $\lesssim M_H \lesssim$ 180 GeV

$M_H = 125 \text{ GeV} \Rightarrow$ we live in a meta-stable vacuum! [Degrassi et al. '12] [Alehkin et al. '12]

... if there is nothing else than the SM up to the Planck scale!

3. Electroweak Precision Observables (EWPO) and the Higgs mass:

Comparison of electro-weak precision observables with theory:

Test of theory at quantum level: Sensitivity to loop corrections, e.g. H

SM: limits on M_H

Very high accuracy of measurements and theoretical predictions needed

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, G. Weiglein, L. Zeune '13]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like

MSSM is SM-like

 $\frac{\text{SM band:}}{\text{variation of } M_H^{\text{SM}}}$

<u>Example</u>: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, G. Weiglein, L. Zeune '13]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like

MSSM is SM-like

 $\frac{\text{SM band:}}{\text{variation of } M_H^{\text{SM}}}$

What about the **UNCERTAINTIES**?

Three different types of uncertainties:

Experimental error:

- current error
- future expectations
- \Rightarrow sets the scale, has to be matched by other errors

Theory uncertainty:

- \Rightarrow uncertainty due to missing higher order corrections
- only estimates possible
- even more complicated for the future

Parametric uncertainty:

uncertainty in the prediction due to error in the input parameters

- $-m_t$, α_s , PDFs, ...
- future expectations?
- ⇒ derive information about (unknown) SUSY parameters (SUSY parametric uncertainties highly model dependent)

Precision observables in the SM and the MSSM

 M_W , sin² $\theta_{\rm eff}$, M_h , $(g-2)_{\mu}$, b physics, ...

A) Theoretical prediction for M_W in terms

Evaluate Δr from μ decay $\Rightarrow M_W$

One-loop result for M_W in the SM: [A. Sirlin '80], [W. Marciano, A. Sirlin '80]

$$\Delta r_{1-\text{loop}} = \Delta \alpha - \frac{c_W^2}{s_W^2} \Delta \rho + \Delta r_{\text{rem}}(M_H)$$
$$\sim \log \frac{M_Z}{m_f} \sim m_t^2 - \log (M_H/M_W)$$
$$\sim 6\% \sim 3.3\% \sim 1\%$$

Sven Heinemeyer – Higgs lectures @ CALC18 (Dubna) 30.07.2018

Precision observables in the SM and the MSSM

 M_W , $\sin^2 \theta_{\rm eff}$, M_h , $(g-2)_{\mu}$, b physics, ...

A) Theoretical prediction for M_W in terms

B) Effective mixing angle:

$$\sin^2 \theta_{\text{eff}} = \frac{1}{4 |Q_f|} \left(1 - \frac{\operatorname{Re} g_V^f}{\operatorname{Re} g_A^f} \right)$$

Higher order contributions:

$$g_V^f \to g_V^f + \Delta g_V^f, \quad g_A^f \to g_A^f + \Delta g_A^f$$

Comparison of SM prediction of M_W with direct measurements:

\Rightarrow light Higgs boson preferred

Corrections to M_W , $\sin^2 \theta_{\text{eff}} \rightarrow \text{approximation via the } \rho$ -parameter:

 ρ measures the relative strength between neutral current interaction and charged current interaction

$$\rho = \frac{1}{1 - \Delta \rho} \qquad \Delta \rho = \frac{\Sigma_Z(0)}{M_Z^2} - \frac{\Sigma_W(0)}{M_W^2}$$

(leading, process independent terms)

 $\Delta \rho$ gives the main contribution to EW observables:

$$\Delta \rho^{\text{SUSY}}$$
 from \tilde{t}/\tilde{b} loops > 0 $\Rightarrow M_W^{\text{SUSY}} \gtrsim M_W^{\text{SM}}$

Sven Heinemeyer – Higgs lectures @ CALC18 (Dubna) 30.07.2018

 $\Delta \rho^{\text{SUSY}}$ from \tilde{t}/\tilde{b} loops > 0 $\Rightarrow M_W^{\text{SUSY}} \gtrsim M_W^{\text{SM}}$, $\sin^2 \theta_{\text{eff}}^{\text{SUSY}} \lesssim \sin^2 \theta_{\text{eff}}^{\text{SM}}$

SM result for M_W and $\sin^2 \theta_{\text{eff}}$:

- full one-loop
- full two-loop
- leading 3-loop via $\Delta \rho$
- leading 4-loop via $\Delta \rho$

Our MSSM result for M_W and $\sin^2 \theta_{eff}$:

- full SM result (via fit formel)
- full MSSM one-loop (incl. complex phases)
- all existing two-loop $\Delta \rho$ contributions
- \Rightarrow non- $\Delta \rho$ one-loop and $\Delta \rho$ two-loop contributions sometimes non-negligible!

<u>Example</u>: Prediction for M_W and $\sin^2 \theta_{eff}$ in the SM and the MSSM : [S.H., W. Hollik, G. Weiglein, L. Zeune et al. '13]

<u>Example</u>: Prediction for M_W and $\sin^2 \theta_{eff}$ in the SM and the MSSM : [S.H., W. Hollik, G. Weiglein, L. Zeune et al. '13]

Overview about all EWPO:

Global EW fit G fitter SM M_H Indirect determination 0.0 Measurement G fitter sm Mw -1.5 $\Gamma_{\mathbf{W}}$ M_H 0.1 Mw Mz 0.3 Γ_{W} Γ_{z} -0.2 Μ_z σ<mark>0</mark> had -1.5 Γ_{z} $\mathsf{R}^0_{\mathsf{lep}}$ -1.0 σ_{had}^{0} A^{0,I} FB -0.9 R^0_{lep} A_(LEP) $A_{FB}^{0,I}$ 0.1 A_I(SLD) A_I(LEP) -2.1 $sin^2 \Theta_{eff}^{lept} (Q_{FB})$ A_I(SLD) -0.7 sin²⊖^{lept}_{eff}(Q_{FB}) sin²⊖^{lept}_{eff}(Tevt.) sin² Θ_{eff}^{lept} (Tevt.) 0.1 $\mathbf{A}_{\mathrm{FB}}^{0,\mathrm{c}}$ 0.8 A_c A^{0,b} FB 2.4 A_b A_c 0.0 $A_{FB}^{0,c}$ A_b 0.6 $A_{FB}^{0,b}$ R_c⁰ 0.0 R_c^0 R_b⁰ -0.7 R_b^0 m, m₊ 0.5 $\Delta \alpha_{had}^{(5)}(M_{7}^{2})$ $\Delta\alpha^{\text{(5)}}_{\text{had}}(\text{M}^2_{\text{Z}})$ -0.2 α_s(Μ̄) $\alpha_{s}(M^{2})$ 1.3 -3 -2 3 -1 0 2 -2 1 -3 -1 0 2 3 1 (O_{indirect} – O) / σ_{tot} (O_{_{fit}} - O_{meas}) / \sigma_{meas}

Sven Heinemeyer – Higgs lectures @ CALC18 (Dubna) 30.07.2018

[GFitter '18]

Results for M_H from other EWPO:

light Higgs preferred by: M_W , A_{LR}^l (SLD)

heavier Higgs preferred by: A_{FB}^{b} (LEP) \Rightarrow keeps SM alive

 \Rightarrow light Higgs boson preferred

[GFitter '18]

Global fit to all SM data: [LEPEWWG '12] $\underline{m}_{Limit} = 152 \text{ GeV}$ March 2012 6 Theory uncertainty $\Rightarrow M_H = 94^{+29}_{-24} \text{ GeV}$ $\Delta \alpha_{\rm bod}^{(5)} =$ 5 0.02750±0.00033 ····· 0.02749±0.00010 $M_H < 152 \text{ GeV}, 95\% \text{ C.L.}$ \cdots incl. low Q² data 4 -3 2 Assumption for the fit: SM incl. Higgs boson \Rightarrow no confirmation of **I FP** LHC excluded excluded Higgs mechanism \mathbf{O} 40 100m_н [GeV]

 \Rightarrow Prediction before discovery: in the SM: $M_H \lesssim 160$ GeV

200

Latest global fit to all SM data: [*GFitter '18*]

 $\Rightarrow M_H = 90^{+21}_{-18} \text{ GeV}$ "agreement" at 1.8 σ

Assumption for the fit: SM incl. Higgs boson ⇒ no confirmation of Higgs mechanism

	today	Tev./LHC	LC	GigaZ	
$\delta \sin^2 \theta_{\rm eff}(\times 10^5)$	16	16	_	1.3	
δM_W [MeV]	15	≤ 15	3-4	3-4	
δm_t [GeV]	0.8	≤ 1	0.1	0.1	

<u>Relevant SM parametric errors:</u> $\delta(\Delta \alpha_{had}) = 5 \times 10^{-5}$, $\delta M_Z = 2.1$ MeV

	$\delta m_t = 2$	$\delta m_t = 1$	$\delta m_t = 0.1$	$\delta(\Delta \alpha_{\sf had})$	δM_Z
$\delta \sin^2 \theta_{\rm eff} \ [10^{-5}]$	6	3	0.3	1.8	1.4
ΔM_W [MeV]	12	6	1	1	2.5

Improvement in the Blue Band plot:

[GFitter '09]

(note: artificially $M_H^{SM} = 120 \text{ GeV}$)

Sven Heinemeyer – Higgs lectures @ CALC18 (Dubna) 30.07.2018

Most precise M_H test with the ILC:

 $\Rightarrow \delta M_H^{\text{ind}} \lesssim \pm 6 \text{ GeV}$ \Rightarrow extremely sensitive test of SM (and BSM) possible