ARIeL: Physics at Future e^+e^- colliders

Renat Sadykov JINR, Dubna on behalf of the SANC team

Helmholtz International Summer School "Modern Colliders - Theory and Experiments 2018" & International Workshop "Calculations for Modern and Future Colliders (CALC2018)" Dubna, 23.07.2018

Outline

- Motivation and goals
- Description of the project
- Polarized Bhabha scattering $e^+e^-
 ightarrow e^+e^-$ at NLO EW
- Preliminary results at NLO EW for other processes with polarized e^+e^- beams
- Conclusions and plans

Motivation: choice of collider types

- Point-like particles
- Total annihilation: initial state known
- Decent background
- Limited in energy, but precision!

 $pp(\bar{p})$ collisions

- Composite particles
- Random energy of the hard interaction
- High background
- High energy discovery!

Projects of e^+e^- collider

CLIC (2035) 380-3000 GeV

ILC (2030) 250 GeV

CEPC (2030) 240 GeV

FCC-ee (2039) 350 GeV

Why ARIeL?

- Advanced
- Research of
- Interactions in
- e⁺e⁻
- coLlisions

Goals

- Preparation of CLIC research program:
 - Precision study of $e^+e^- \to \gamma\gamma$ and setting limits on the NP models
 - Precision measurement of the Higgs boson mass M_H
 - Determination of top quark polarization
 - Measurement of $\gamma\gamma \to W^+W^-$ and $\gamma\gamma \to ZZ$ and search for anomalous quarting coupling
- Theoretical support:
 - Create e^+e^- Monte Carlo generator with polarization at complete one-loop EW and leading multiloop for processes $e^+e^- \rightarrow e^+e^-$ ($\mu\mu, \tau\tau, tt, HZ, H\gamma, Z\gamma, ZZ, H\nu\nu, H\mu\mu, ff\gamma, \gamma\gamma$)
 - Interface NLO EW RC to PYTHIA8
 - Implement a single-resonance approach to complex processes
 - Elaborate the standard procedure for $2\rightarrow 3,4$ helicity amplitudes
 - Create building blocks for complete EW 2-loops and QCD 3-loops, plus leading EW 3-loops and QCD 4-loops

The calculation framework scheme

Processes with polarized beams in MCSANC

- NLO EW corrections for polarized e^+e^- scattering:
 - Bhabha scattering (D.Bardin et al. Phys.Rev. D98 (2018) no.1, 013001)
 - $e^+e^- \rightarrow \mu^+\mu^-$, $e^+e^- \rightarrow \tau^+\tau^-$ (preliminary results)
 - $e^+e^- \rightarrow Z\gamma$ (preliminary results)
 - $e^+e^- \rightarrow t\bar{t}$ (in progress)
 - $e^+e^- \rightarrow ZH$ (in progress)
 - $e^+e^- \rightarrow \gamma\gamma$ (in progress)
 - $e^+e^- \rightarrow ZZ$ (in progress)
 - $e^+e^- \rightarrow f \bar{f} \gamma$ (future plans)
 - $e^+e^- \rightarrow f\bar{f}H$ (future plans)
- NLO EW corrections for polarized $\gamma\gamma$ scattering:
 - $\gamma\gamma \rightarrow \gamma\gamma$ (future plans)
 - $\gamma\gamma \rightarrow Z\gamma$ (future plans)
 - $\gamma\gamma \rightarrow ZZ$ (future plans)

Decomposition of the e^{\pm} polarization vector

G. Moortgat-Pick et al. Phys. Rept. 460 (2008) 131-243

Matrix element squared

$$\begin{split} |\mathcal{M}|^{2} = & L_{e^{-}}^{||} R_{e^{+}}^{||} |\mathcal{H}_{-+}|^{2} + R_{e^{-}}^{||} L_{e^{+}}^{||} |\mathcal{H}_{+-}|^{2} + L_{e^{-}}^{||} L_{e^{+}}^{||} |\mathcal{H}_{--}|^{2} + R_{e^{-}}^{||} R_{e^{+}}^{||} |\mathcal{H}_{++}|^{2} \\ & - \frac{1}{2} P_{e^{-}}^{T} P_{e^{+}}^{T} Re \Big[e^{i(\Phi_{+} - \Phi_{-})} \mathcal{H}_{++} \mathcal{H}_{+-}^{*} + e^{i(\Phi_{+} + \Phi_{-})} \mathcal{H}_{+-} \mathcal{H}_{++}^{*} \Big] \\ & + P_{e^{-}}^{T} Re \Big[e^{i\Phi_{-}} \Big(L_{e^{+}}^{||} \mathcal{H}_{+-} \mathcal{H}_{--}^{*} + R_{e^{+}}^{||} \mathcal{H}_{++} \mathcal{H}_{++}^{*} \Big) \Big] \\ & - P_{e^{+}}^{T} Re \Big[e^{i\Phi_{+}} \Big(L_{e^{-}}^{||} \mathcal{H}_{-+} \mathcal{H}_{--}^{*} + R_{e^{-}}^{||} \mathcal{H}_{++} \mathcal{H}_{+-}^{*} \Big) \Big], \end{split}$$
 where

$$L_{e^{\pm}}^{||} = rac{1}{2}(1-P_{e^{\pm}}^{||}), \quad R_{e^{\pm}}^{||} = rac{1}{2}(1+P_{e^{\pm}}^{||}), \quad \Phi_{\pm} = \phi_{\pm} - \phi_{\pm}$$

 $\mathcal{H}_{--}, \mathcal{H}_{++}, \mathcal{H}_{-+}, \mathcal{H}_{+-}$ — helicity amplitudes.

Longitudinally-polarized beams

With longitudinally-polarized beams, cross-sections at an e^+e^- collider can be subdivided into four parts:

$$\sigma_{P_{e^{-}}P_{e^{+}}} = R_{e^{-}}R_{e^{+}}\sigma_{RR} + L_{e^{-}}L_{e^{+}}\sigma_{LL} + R_{e^{-}}L_{e^{+}}\sigma_{RL} + L_{e^{-}}R_{e^{+}}\sigma_{LR},$$

where σ_{RL} stands for the cross-section if the e^- beam is completely righthanded polarized ($P_{e^-} = +1$) and the e^+ beam is completely left-handed polarized ($P_{e^+} = -1$). The cross-sections σ_{LR} , σ_{RR} and σ_{LL} are defined analogously.

Polarized Bhabha scattering at one-loop

Here we present complete one-loop EW corrections to Bhabha scattering $e^+e^- \rightarrow e^+e^-$ with longitudinally polarized initial particles.

The cross-section of this process at one-loop can be divided into four parts:

$$\sigma^{1-\text{loop}} = \sigma^{\text{Born}} + \sigma^{\text{virt}}(\lambda) + \sigma^{\text{soft}}(\lambda, \omega) + \sigma^{\text{hard}}(\omega),$$

where σ^{Born} — Born level cross-section, σ^{virt} — contribution of virtual(loop) corrections, σ^{soft} — contribution due to soft photon emission, σ^{hard} — contribution due to hard photon emission (with energy $E_{\gamma} > \omega \frac{\sqrt{s}}{2}$).

Auxiliary parameters λ ("photon mass") and ω cancel out after summation.

Bhabha scattering: Born-level diagrams

Polarized Bhabha scattering: HA for Born and Virtual parts

At one-loop level we have six non-zero HAs (four independent):

$$\begin{split} \mathcal{H}_{++++} &= \mathcal{H}_{----} = -2e^{2} \frac{s}{t} \Big(\mathcal{F}_{QQ}^{(\gamma,Z)}(t,s,u) - \chi_{Z}^{t} \delta_{e} \mathcal{F}_{QL}^{Z}(t,s,u) \Big), \\ \mathcal{H}_{+-+-} &= \mathcal{H}_{-+++} = -2e^{2} \frac{t}{s} \Big(\mathcal{F}_{QQ}^{(\gamma,Z)}(s,t,u) - \chi_{Z}^{s} \delta_{e} \mathcal{F}_{QL}^{Z}(s,t,u) \Big), \\ \mathcal{H}_{+--+} &= 2e^{2} \Big(\frac{u}{s} \Big[\mathcal{F}_{QQ}^{(\gamma,Z)}(s,t,u) + \chi_{Z}^{s} \left(\mathcal{F}_{LL}^{Z}(s,t,u) - 2\delta_{e} \mathcal{F}_{QL}^{Z}(s,t,u) \right) \Big] \\ &+ \frac{u}{t} \Big[\mathcal{F}_{QQ}^{(\gamma,Z)}(t,s,u) + \chi_{Z}^{t} \left(\mathcal{F}_{LL}^{Z}(t,s,u) - 2\delta_{e} \mathcal{F}_{QL}^{Z}(t,s,u) \right) \Big] \Big), \\ \mathcal{H}_{-++-} &= 2e^{2} \Big(\frac{u}{s} \mathcal{F}_{QQ}^{(\gamma,Z)}(s,t,u) + \frac{u}{t} \mathcal{F}_{QQ}^{(\gamma,Z)}(t,s,u) \Big), \end{split}$$

where

$$\chi_{Z}^{s} = \frac{1}{4s_{W}^{2}c_{W}^{2}} \frac{s}{s - M_{Z}^{2} + iM_{Z}\Gamma_{Z}}, \quad \chi_{Z}^{t} = \frac{1}{4s_{W}^{2}c_{W}^{2}} \frac{t}{t - M_{Z}^{2}}, \quad \delta_{e} = v_{e} - a_{e} = 2s_{W}^{2},$$

 $\mathcal{F}_{QQ}^{(\gamma,Z)}(a,b,c) = \mathcal{F}_{QQ}^{\gamma}(a,b,c) + \chi_Z^a \delta_e^2 \mathcal{F}_{QQ}^Z(a,b,c).$

We get the Born level HAs by replacing $\mathcal{F}_{LL}^Z \to 1$, $\mathcal{F}_{QL}^Z \to 1$, $\mathcal{F}_{QQ}^Z \to 1$ and $\mathcal{F}_{QQ}^\gamma \to 1$.

Polarized Bhabha scattering: soft photon contribution

The soft photon contribution contains the infrared divergences which compensate the infrared divergences of the one-loop QED corrections.

This soft photon correction can be calculated analytically and to be factorized to Born cross section. The polarization dependence is contained in $\sigma^{\rm Born}$.

$$\begin{split} \sigma^{\text{soft}}(\lambda,\omega) &= -\sigma^{\text{Born}}\frac{\alpha}{\pi} \Biggl\{ \left(1 + \ln\left(\frac{m_e^2}{s}\right) \right)^2 + \ln\left(-\frac{u}{s}\right)^2 - \ln\left(-\frac{t}{s}\right)^2 \\ &- 2\text{Li}_2\left(-\frac{u}{s}\right) + 2\text{Li}_2\left(-\frac{t}{s}\right) + 4\text{Li}_2\left(1\right) \\ &- 1 + 2\ln\left(\frac{4\omega^2}{\lambda}\right) \left[1 + \ln\left(\frac{m_e^2}{s}\right) - \ln\left(\frac{t}{u}\right) \right] \Biggr\}. \end{split}$$

Polarized Bhabha scattering: hard photon contribution

For HA for hard bremsstrahlung see presentation by Yahor Dydyshka

Polarized Bhabha scattering: Monte Carlo generator

We created Monte Carlo generator of unweighted events for the polarized Bhabha scattering $e^+e^- \rightarrow e^+e^-$ with complete one-loop EW corrections.

This generator uses adaptive algorithm mFOAM [CPC 177:441-458,2007] which is a part of ROOT [https://root.cern.ch] program.

It will be interfaced to PYTHIA8 [CPC 178 (2008) 852-867] program.

Setup for tuned comparison

We performed a tuned comparison of our results for polarized Born and hard Bremsstrahlung with the results WHIZARD [Eur.Phys.J.C71 (2011) 1742] program. The contributions of soft and virtual parts were compared with the results of alTALC [CPC 174 (2006) 71-82] program

Input parameters:

 $\alpha^{-1}(0) = 137.03599976,$ $M_W = 80.4514958 \text{ GeV}, \quad M_Z = 91.1876 \text{ GeV}, \quad \Gamma_Z = 2.49977 \text{ GeV},$ $m_e = 0.51099907 \text{ MeV}, \quad m_\mu = 0.105658389 \text{ GeV}, \quad m_\tau = 1.77705 \text{ GeV},$ $m_d = 0.083 \text{ GeV}, \quad m_s = 0.215 \text{ GeV}, \quad m_b = 4.7 \text{ GeV},$ $m_u = 0.062 \text{ GeV}, \quad m_c = 1.5 \text{ GeV}, \quad m_t = 173.8 \text{ GeV}.$

Cuts:

 $|\cos heta| < 0.9,$ $E_{\gamma} > 1 \mbox{ GeV}$ (for comparison of hard Bremsstrahlung).

$e^+e^- \rightarrow e^+e^-$: WHIZARD vs MCSANC (Born)

P_{e^-}, P_{e^+}	0, 0	-0.8, 0	-0.8, -0.6	-0.8, 0.6	
$\sqrt{s} = 250 \text{ GeV}$					
$\sigma^{Born}_{e^+e^-}$, pb	56.677(1)	57.774(1)	56.272(1)	59.276(1)	
$\sigma^{Born}_{e^+e^-}$, pb	56.677(1)	57.775(1)	56.272(1)	59.275(1)	
$\sqrt{s} = 500 \text{ GeV}$					
$\sigma_{e^+e^-}^{Born}$, pb	14.379(1)	15.030(1)	12.706(1)	17.355(1)	
$\sigma_{e^+e^-}^{Born}$, pb	14.379(1)	15.030(1)	12.706(1)	17.354(1)	
$\sqrt{s} = 1000$ GeV					
$\sigma^{Born}_{e^+e^-}$, pb	3.6792(1)	3.9057(1)	3.0358(1)	4.7756(1)	
$\sigma_{e^+e^-}^{\text{Born}}$, pb	3.6792(1)	3.9057(1)	3.0358(1)	4.7755(1)	

$e^+e^- \rightarrow e^+e^-$: WHIZARD vs MCSANC (hard)

P_{e^-}, P_{e^+}	0, 0	-0.8, 0	-0.8, -0.6	-0.8, 0.6	
$\sqrt{s} = 250 \text{ GeV}$					
$\sigma^{hard}_{e^+e^-}$, pb	48.62(1)	49.58(1)	48.74(1)	50.40(1)	
$\sigma_{e^+e^-}^{hard}$, pb	48.65(1)	49.56(1)	48.78(1)	50.44(1)	
$\sqrt{s} = 500 \text{ GeV}$					
$\sigma^{hard}_{e^+e^-}$, pb	15.14(1)	15.81(1)	13.54(1)	18.07(1)	
$\sigma^{hard}_{e^+e^-}$, pb	15.12(1)	15.79(1)	13.55(1)	18.11(2)	
$\sqrt{s}=1000$ GeV					
$\sigma_{e^+e^-}^{hard}$, pb	4.693(1)	4.976(1)	3.912(1)	6.041(1)	
$\sigma_{e^+e^-}^{hard}$, pb	4.694(1)	4.975(1)	3.913(1)	6.043(1)	

$e^+e^- \rightarrow e^+e^-$: altral vs MCSANC (virtual+soft)

$\cos \theta$	$\sigma^{Born}_{\mathrm{e^+e^-}}$, pb	$\sigma_{e^+e^-}^{Born+virt+soft}$, pb
-0.9	$2.16999 \cdot 10^{-1}$	$1.93445 \cdot 10^{-1}$
	$2.16999 \cdot 10^{-1}$	$1.93445 \cdot 10^{-1}$
-0.5	$2.61360 \cdot 10^{-1}$	$2.38707 \cdot 10^{-1}$
	$2.61360 \cdot 10^{-1}$	$2.38707 \cdot 10^{-1}$
0	$5.98142 \cdot 10^{-1}$	$5.46677 \cdot 10^{-1}$
	$5.98142 \cdot 10^{-1}$	$5.46677 \cdot 10^{-1}$
+0.5	$4.21273 \cdot 10^{0}$	$3.81301 \cdot 10^{0}$
	$4.21273 \cdot 10^{0}$	$3.81301 \cdot 10^{0}$
+0.9	$1.89160 \cdot 10^2$	$1.72928 \cdot 10^2$
	$1.89160\cdot 10^2$	$1.72928\cdot 10^2$
+0.99	$2.06556 \cdot 10^4$	$1.90607 \cdot 10^{4}$
	$2.06555 \cdot 10^4$	$1.90607 \cdot 10^{4}$
+0.999	$2.08236 \cdot 10^{6}$	$1.91624 \cdot 10^{6}$
	$2.08236 \cdot 10^{6}$	$1.91624 \cdot 10^{6}$
+0.9999	$2.08429 \cdot 10^{8}$	$1.91402 \cdot 10^{8}$
	$2.08429 \cdot 10^{8}$	$1.91402\cdot 10^8$

$e^+e^- ightarrow e^+e^-$: Born vs 1-loop

P_{e^-} , P_{e^+}	0, 0	-0.8, 0	-0.8, -0.6	-0.8, 0.6		
$\sqrt{s} = 250 { m GeV}$						
$\sigma^{Born}_{e^+e^-}$, pb	56.6763(1)	57.7738(1)	56.2725(4)	59.2753(5)		
$\sigma_{e^+e^-}^{1-loop}$, pb	61.731(6)	62.587(6)	61.878(6)	63.287(7)		
δ, %	8.92(1)	8.33(1)	9.96(1)	6.77(1)		
$\sqrt{s} = 500 \mathrm{GeV}$						
$\sigma^{Born}_{e^+e^-}$, pb	14.3789(1)	15.0305(1)	12.7061(1)	17.3550(2)		
$\sigma_{e^+e^-}^{1-loop}$, pb	15.465(2)	15.870(2)	13.861(1)	17.884(2)		
δ, %	7.56(1)	5.59(1)	9.09(1)	3.05(1)		
$\sqrt{s}=1000$ GeV						
$\sigma^{Born}_{e^+e^-}$, pb	3.67921(1)	3.90568(1)	3.03577(3)	4.77562(5)		
$\sigma_{e^+e^-}^{1-loop}$, pb	3.8637(4)	3.9445(4)	3.2332(3)	4.6542(7)		
δ, %	5.02(1)	0.99(1)	6.50(1)	-2.54(1)		

$e^+e^- ightarrow e^+e^-$: distributions in $\cos heta$

$e^+e^- ightarrow e^+e^-$: A_{LR} distributions in $\cos heta$ $A_{LR} = rac{\sigma_{LR} - \sigma_{RL}}{\sigma_{LR} + \sigma_{RL}}$ $\sqrt{s} = 250 \text{ GeV}$ $\sqrt{s} = 500 \text{ GeV}$

 $\sqrt{s} = 1000 \,\, {
m GeV}$

$e^+e^- ightarrow \ell^+\ell^-$: Born vs 1-loop (preliminary)

P_{e^-} , P_{e^+}	0, 0	-0.8, 0	-0.8, -0.6	-0.8, 0.6	
$\sqrt{s}=250{ m GeV}$					
	$e^- + e^+$	$ ightarrow e^- + e^+$	(Bhabha)		
$\sigma^{Born}_{e^+e^-}$, pb	56.6763(1)	57.7738(1)	56.2725(4)	59.2753(5)	
$\sigma_{e^+e^-}^{1-1000}$, pb	61.731(6)	62.587(6)	61.878(6)	63.287(7)	
δ, %	8.92(1)	8.33(1)	9.96(1)	6.77(1)	
$e^- + e^+ ightarrow \mu^- + \mu^+$					
$\sigma_{e^+e^-}^{\text{Born}}$, pb	1.4174(1)	1.5462(1)	0.7690(2)	2.3231(2)	
$\sigma_{e^+e^-}^{1-1000}$, pb	2.3987(2)	2.616(2)	1.3015(1)	3.929(1)	
δ, %	69.22(2)	69.13(1)	69.18(2)	69.12(1)	
$e^- + e^+ \rightarrow \tau^- + \tau^+$					
$\sigma^{\sf Born}_{e^+e^-}$, pb	1.4174(1)	1.5461(1)	0.7692(1)	2.3230(1)	
$\sigma_{e^+e^-}^{1-loop}$, pb	2.3609(1)	2.5773(1)	1.2817(1)	3.8728(2)	
δ, %	66.56(1)	66.69(1)	66.62(1)	66.71(1)	

$e^+e^- \rightarrow \ell^+\ell^-$: distributions in $\cos \theta_\ell$ (preliminary)

$e^+e^- ightarrow Z\gamma$

The expressions fo HA and the results for unpolarized case were published in Eur.Phys.J.C54:187-197,2008

Here we present the preliminary results for 1-loop corrections taking into account the effect of polarization of e^+e^- beams.

$e^+e^- \rightarrow Z\gamma$: Born vs 1-loop (preliminary)

\sqrt{s}	250 500		1000	
$\sigma_{Z\gamma}^{Born}$, pb	15.7038(6)	3.3858(3)	0.81958(3)	
$\sigma_{Z\gamma}^{1-\text{loop}}$, pb	24.37(1)	5.23(6)	1.237(3)	
δ, %	55.20(6)	54.4(2)	50.9(4)	

P_{e^-} , P_{e^+}	0, 0	-0.8, 0	-0.8, 0.6	-0.8, -0.6	
$\sqrt{s}=250{ m GeV}$					
$\sigma_{Z\gamma}^{Born}$, pb	15.7038(6)	18.520(4)	28.174(2)	8.870(3)	
$\sigma_{Z\gamma}^{1-\mathrm{loop}}$, pb	24.37(1)	28.00(1)	42.13(2)	13.53(1)	
δ, %	55.20(6)	51.11(8)	49.55(7)	52.57(9)	

$e^+e^- \rightarrow Z\gamma$: distributions in $\cos \theta_Z$ (preliminary)

Conclusions and plans

- We are building a powerful team of experimentalists and theoreticians that will prepare the physics research at the next generation e^+e^- collider
- We created the FORTRAN modules for polarized Bhabha scattering with complete one-loop EW corrections. Based on these modules Monte Carlo generator [Phys.Rev. D98 (2018) no.1, 013001] of unweighted events was created with possibility to produce events in Les Houches Event format
- Preliminary results for polarized $e^+e^- \rightarrow \mu^+\mu^-$, $e^+e^- \rightarrow \tau^+\tau^-$ and $e^+e^- \rightarrow Z\gamma$ were presented. More processes will be included in MC generator in the future