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mathematica math

Frontend [arvwrrrwne Kernel
(GUI) Mathtink (Computation)

http://wwwth.mpp.mpg.de/members/hahn/intro_math.pdf
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' No obvious relation

between screen and © Interactive and
definitions non-interactive
© Always interactive © Scriptable
© Slow startup © Fast startup )
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myAbs([x_] := -x /; Negative[x]

We get:
myAbs[3] = 3
myAbs[-5] = 5
myAbs[2 + 3 I] = myAbs[2 + 3 I]
— no rule for complex arguments so far
myAbs [x] = myAbs[x]
— no match either
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e applied once using Rules:

a+b+c/.a->2cme= Db+ 3c

Transformations can be Immediate or Delayed. Consider:

{r, r} /. r -=> Random[] = {0.823919, 0.823919}
{r, r} /. r :> Random[] = {0.356028, 0.100983}
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FullForm[expr] == Plus[a, b]

Head [expr] == Plus
[ [0]]
(1]
2]

expr
expr
expr

¥ Plus
I a
I b

— same as Head [expr]
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Apply[Plus, {a, b, c}] = a + b + c
Plus @@ {a, b, c} = a + b + ¢ — short form

Pure Functions are a concept from formal logic. A pure
function is defined ‘on the fly’:

(# + 1)& /@ {4, 8} = {5, 9}

The # (same as #1) represents the first argument, and the &
defines everything to its left as the pure function.
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Do[ sum += tab[[i]], {i, Length[tabl} ];

sum ]
test2 :=|Apply[Plus, tab] .
Here are the timings: -
Timing[test1] [[1]] == 8.29 Second -
Timing[test2] [[1]] = 1.75 Second O
H
H
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Prepend and Append add elements at the front or back:

Prepend([r[a, b], c] = r[c, a, b]
Append[r[a, b], c] = r[a, b, c]

Insert and Delete insert and delete elements:

Insert[hl[a, b, cl], x, {2}] = hla, x, b, c]
Deletel[h[a, b, c], {2}] = hla, c]
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AppendTo[res, tab[[i]]]

| 6&[ £es = {res, tab[[i]]i, {i, Length[tabl} ];
Flatten[res] ]

.

The timings: -
Timing[test1] [[1]] = 19.47 Second

Timing[test2] [[1]] = 0.11 Second -

N

N

N
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test1 has to re-write the list every time an element is added:
{+ {1} {1,2} {1,2,3}

test2 does that only once at the end with Flatten:

>

f I 1 I_I_I
{+ {3 1r {{{},1}1,2}
-, T ' |

{{{{},1},2},3} ...

>
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X_ — pattern wit ead h
x_:1 — default value
x_"7Number( — conditional pattern
x_ /; x > 0 — conditional pattern

Patterns take function overloading to the limit, i.e. functions
behave differently depending on details of their arguments:

Attributes[Pair] = {Orderless}
Pair[p_Plus, j_] := Pair([#, jl& /@ p
Pair[n_?NumberQ i_, j_] := n Pair[i, j]
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:Begin:

:Function: mAO

:Pattern: AO[m_, opt___Rule]

:Arguments: {N[m], N[Delta /. {opt} /. Options[AO]],
N[Mudim /. {opt} /. Options[AO]]}

:ArgumentTypes: {Real, Real, Real} -

:ReturnType: Real

:End.: =
o

:Evaluate: Options[AO] = {Delta -> 0, Mudim -> 1} :
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Load in Mathematica with Install["program"].

For even more details see arXiv:1107.4379.
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AppendTo [$Echo, "stdout"];
<< FeynArts°
top = CreateTopologiesl[...];

EOF_ . ... ... . .. end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.
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#! /bin/sh
math -run "argl=$1" -run "arg2=3%$2" ... << \END

END

e Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: -x flag makes shell echo every statement,
#! /bin/sh -x
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e Script, Distribute, Automate
e Crunch numbers outside Mathematica
But: don’t overdo it.

If your calculation takes 5 min in total, don’t waste time
improving.
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ParallelMap[myfunc, data];

Parallel Kernels count toward Sublicenses.
# Sublicenses = 8 x # interactive Licenses.
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DistributeDefinitions DistributeContexts

Automatic parallelization (so-so success):
Parallelize [expr]

‘Intrinsic’ functions (e.g. Simplify) not parallelizable.

Multithreaded computation partially automatic (OMP) for
some numerical functions, e.g. Eigensystem.

Take care of side-effects of functions.

Usual concurrency stuff (write to same file, etc).
. B B
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e Showstopper: Functions not available in Fortran/C, e.g.
NDSolve, Zeta. Maybe 3rd-party substitute (GSL, Netlib).

e Mathematica has built-in C-code generator, e.g.

myfunc = Compile[{{x}}, x"2 + Sin[x"2]];
Export ["myfunc.c", myfunc, "C"]

But no standalone code: shared object for use with
Mathematica (i.e. also needs license).

e FormCalc’s code-generation functions produce optimized
standalone code. EEEE
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opens file.F as a Fortran file for writing,

e WriteExpr[handle, {var -> expr, .. .}]
writes out Fortran code which calculates expr and stores
the result in var,

e Close[handle]
closes the file again.
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var = par
var = var + part?2

e High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

e Many ancillary functions make code generation versatile
and highly automatable, such that the resulting code
needs few or no changes by hand:

VarDecl, ToDoLoops, IndexIf, FileSplit, ...
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e Loops and tests handled through macros, e.g.
LOOP(var, 1,10,1) ... ENDLOOP (var)

¢ Introduced data types RealType and ComplexType for
better abstraction, can e.g. be changed to different
precision.
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WriteExpr[h, ' pr,
Close[h]

Fortran — Mathematica:

Get http://feynarts.de/formcalc/FortranGet.tm
Compile: mcc -o FortranGet FortranGet.tm
Load in Mathematica: Install["FortranGet"]
Read Fortran code: FortranGet["file.F"]

m H B N
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e Efficient compilers available (commercial + free).
e Straightforward to link with other languages, e.g. C/C++.

More discussion:

http://moreisdifferent.com/2015/07/16/
why-physicsts-still-use-fortran/
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ToForm < file.m > file.frm
FORM — Mathematica:
e Get http://feynarts.de/formcalc/FormGet.tm
e Compile it with mcc -0 FormGet FormGet.tm
e Load it in Mathematica with Install["FormGet"]

e Read a FORM output file;: FormGet ["file.out"]
Pipe output from FORM: FormGet ["!form file.frm"]
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Numerics, Symbolics
Springer, 2004-2006.

e Andrei Grozin

Introduction to Mathematica for
Physicists
Springer, 2013.
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Abbreviationing
Easy in Mathematica, new in FORM.

o Simplification of Color Structures
Different approaches.

e Calculation of a Fermion Trace
Built-in in FORM, complicated in Mathematica.

e Tensor Reduction
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e Herbert Pietschmann
Formulae and Results in Weak Interactions
Springer (Austria) 2nd ed., 1983.

e Andrei Grozin
Using REDUCE in High-Energy Physics
Cambridge University Press, 1997.
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antisymmetric object, can be written with the c-tensor:

n
detA — Z glllzlnAlllAlzz S Ainn

i]_,...,in:l

In practice, the s-tensor is usually contracted, e.qg. with vectors.
We will adopt the following notation to avoid dummy indices:

Envpo Pt g 1Ps” = e(p,q,1,5).
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(* otherwise sort the arguments into canonical order: *)

Epslargs__] := Signature[{args}] Eps@@ Sort[{args}] /;
'0rderedQ[{args}]
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p1+ Py +p3+2p1p2 — 2paps — 2p1ps +m
whereas if p1 + p2» = p3 + p4 we could have instead

1
py+m?

d—

In Mathematica: justdod /.pl + p2 - p3 -> p4.
Problem: FORM cannot replace sums.
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shortest expression (in FORM)?
Solution: add the number of terms of each argument, i.e.

{x,y,z} = {x,y,z,ny,ny,n;}.

Then sort 7,, n,, 1., but when exchanging 7, and r,,
exchange also 2 and b:

symm ‘foo’ (4,1) (5,2) (6,3);
This unconventional sort statement is rather typical for FORM.
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* order according to the nterms
symm ‘foo’ (4,1) (5,2) (6,3);

* choose shortest argument
id ‘foo’([x]?, 7a) = ‘foo’([x]);

#endprocedure
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e essential function here is Unique wi
are introduced. For example,

Unique["test"]

generates e.g. the symbol test1, which is guaranteed not to
be in use so far.

which new symbols

The Module function which implements lexical scoping in fact
uses Unique to rename the symbols internally because
Mathematica can really do dynamical scoping only.

HE B B B
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AbbrList[] := Cases[DownValues[abbr],
_[_[_[£f_11, s_Symbol]l -> s -> f]

(x restore full expression *) -
Restorel[expr_] := expr /. AbbrList[] -
O

O

O

O
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toPolynomial onlyfunctions acc;

.sort

* print abbreviations & abbreviated expr -
=

#write "JX"

print +s; .
u
N
u
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Natural Repres

~ T, =SUNT[a,i, ]

~ T&T¢, = SUNTSunli, j,k, (]

Adjoint Repres

~ fo%¢ = SUNF[a,b,c]

AN
o

b d

~ fobx fxed — SUNF[a,b,c,d]
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e SUNT[7,/] = 5i]'

e SUNT[a,b, .. .,0,0] :Tr(T“Tb..-)

This notation again avoids unnecessary dummy indices.
(Mainly namespace problem.)

For purposes such as the “large-N. limit” people like to use
SU(N) rather than an explicit SU(3).

. B BN BN
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Dirac spinors, but can be generalized to any
finite-dimensional matrix space [hep-ph/0412245].

For SU(N) (color) reordering, we need

1 1
1y = > <5i€5kj — N‘Sij‘SkE) :
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e expect SUNT with indices of
external particles to remain.

For a Squared Amplitude: e use the Fierz identity to get rid
---------------- ; of all SUNT objects,

i ; i
>mm<>m< e expect SUNT to vanish, color
SMONS M factors (numbers) only.

For “hand” calculations, a pictorial version of this algorithm
exists in the literature. EEEN
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repeat;
once SUNT(?a, [al?, [bl?7, [il?, [j1?) =
SUNT(?a, [al, [i], DUMMY) * SUNT([b], DUMMY, [jI1);
sum DUMMY ;
endrepeat;

* apply the Fierz identity

id SUNT([al?, [il?, [jl?) * SUNT([al?, [kl?, [1]7?) =
1/2 » SUNT([i], [1]) = SUNT([jl, [k]) -
1/2/(‘SUNN’) = SUNT([i], [j]) =* SUNT([k], [1]);

| HE B BN
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b) Contraction on the same chain:

(A| T%|B| T |C) :%<<A|C>Tr8—%<A\B\C>). .
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—_—_——) - —_——)

(sunT[t1, t4, i, 1] sunT[tB t2 k, jl -
sunT[t1, t2, i, j] sunT[t3, t4, k, 1]1/SUNN)/2

(* introduce dummy indices for the traces *) -
sunTracela__] := sunT[a, #, #]&[ Unique["col"] ] N
|

n

m

m
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+ Quo Ir yvyp - -

This algorithm is recursive in nature, and we are ultimately
left with

Tr1=4.

(Note that this 4 is not the space-time dimension, but the
dimension of spinor space.)

H B N
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(42 =m3)((9 — p)?> —m3)

Such tensorial integrals are rather unwieldy in practice,
therefore they are reduced to linear combinations of
Lorentz-covariant tensors, e.g.

Buv(p) = Boo(p) §uv + B11(p) pupv -

It is the coefficient functions Byy and B;; which are

implemented in a library like LoopTools.
. B B
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The next step is to take out ¢,,,’s in all possible ways. We do
this in form of a sum:

n
. 1
Nu1.--1un — Z 7'((0) Z 8viva " 8vi1vi Nul---un\‘/l---vi
i=024,... all {vq,...,v;}

E{le---/lin}

The 7(0)" keeps track of the indices of the tensor coefficients,
i.e. it later provides the two zeros for every g, in the index,
as in Dgo1o.

H E E N
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The temporary function v keeps its argument, the ‘tagged’
momentum p, separate from the rest of the amplitude.

Now add the indices of N, ,,, to the momentum in T:
T(P) Nty = P Pran -
Finally, collect all 77’s into the tensor-coefficient index.
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Coi(MOM([p1]), MOM([p2] - [p1l), MOM([p2]), 7a);

* expand momentum
repeat id TMP([p1]?) * NUM([mul?, ?a) =
d_([p1], [mul) * NUM(7a) * TMP([p1l);

* collect the indices
chainin pave;
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tens[i_, _]J[] := C0@ Sort[Flatten[i]]

FindTensors[mu_, p_] :=

Block[ {tenslist},
tenslist = tens[{}, MapIndexed[List, pl]@Q mu;
Collect[Plus@@ Flatten[tenslist], _C]

]
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e Nontrivial renormalization.
Software design so far:
e Mostly ‘monolithic’ (one package does everything).

e Often controlled by parameter cards, not easy to use
beyond intended purpose.

e May want to/must use other packages.
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in gaugeless approximation at p> = 0 at O(cxf).
@ 1L diagrams with insertions of 1L counterterms.
® 2L counterterms for @,

@ 2L tadpoles T<2>, T1<42)’ TI<42> at O(«?) appearing in G,

m H B N
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O—glmod < MSSMCT.mod

model file preparation simplification
SRl /-code <— 6-comb <— < FormCalc
code generation combination of results calculation of =
renorm. constants
m
|
|
|
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arg?2 = 0 for virtua lagrams,
1 for IL diagrams with IL counterterms.

¢ Inputs/outputs defined in first few lines, e.g.
in=m/$1/2-prep.$2
out=m/$1/3-calc.$2

e Symbolic output + log files go to ‘m’ subdirectory.
Log file = Output file + .1og.gz

e Fortran code goes to ‘f’ subdirectory.
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W -z H
@ Keep M, and v finite.

Must set 7, = 0 so that O(«?) corrections form
supersymmetric and gauge-invariant subset.

Most efficient to modify Feynman rules (not ®, though):
e Load MSSMCT.mod model file.
e Modify couplings, remove zero ones.
e Write out MSSMCTgl.mod model file.
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sel[O][S[_] -> S[ 1] = { ; ' 2 1 w 2 1 'c 2

t[3] && htb[6], 3 g 2

t[3] && tb[6], R - 5

t[3] && tb[6], s 2 AP A 8

t(3] &k t[4) 8% heblS], A | 4 e o)

t[3] && htb[5]6], P E L m

t[3] && htb[5], T“ i i

t[B] && t[5] , 4 5 : /g\ |

t[5] && nht[3]4], — @ BEa -

t[31415] && ht[31415] } 3.6 : ’ k/ -
T7 T8 T9 .

T. Hahn, Symbolic Programming in HEP —p.61




T. Hahn, Symbolic Programming in HEP —p.62




U Uy + U Uy =1, U U, + Uy Uy, =0,
ulzllikz + u22u52 =1, u12uik1 + UZzu;1 = 0.

Problem: Simplify will rarely arrange the U’s in just the way
that these rules can be applied directly.

Solution: Introduce auxiliary symbols which immediately
deliver the r.h.s. once Simplify considers the Lh.s., i.e.
increase the ‘incentive’ for Simplify to use the r.h.s.

But: Upvalues work only one level deep.
H B BN
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and formulate unitarity for the UCSTt:

UCst [2,1]
UCSt [2,2]

UCst [1,2];
UCsf[1,1];

UCSf[3,2] = -UCSf[3,1];
UCSfC[3,2] = -UCSfC[3,1];
UCSf[2,3] = -UCSf[1,3];
UCsSfC[2,3] = -UCSfCI[1,3];
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e Introduce DiagMark[m;] where 1, = masses in loop
in FeynArts output.

e Few simplifications can be made between parts with
different DiagMark = Can apply simplification as

Collect[amp, _DiagMark, simpfunc]
e Much faster.
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e Expand in ¢, collect powers for easier handling later, e.g.

{|aMf1[3,3] -> RC[-1, dMf1[-1,3,3]] +
RC[0, dMf1[0,3,3]],

- expansion

{dMf1[-1,3,3] —> ..
dMf1[0,3,3] —> ..

* )

L}

- actual expressions for e-coeffs

}
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e Perform final simplification.
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e Total final code size: 350 kBuytes.

More details in arXiv:1508.00562.
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ake advantage of many packages, convert if necessary.
e Scripting helps combine different packages.
e Crunch numbers outside of Mathematica.
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