Miinchen

http://wwwth.mpp.mpg.de/members/hahn — Lecture Material

T. Hahn, Symbolic Programming in HEP —p.1

mathematica math

Frontend [arvwrrrwne Kernel
(GUI) Mathtink (Computation)

http://wwwth.mpp.mpg.de/members/hahn/intro_math.pdf

T. Hahn, Symbolic Programming in HEP —p.2

' No obvious relation

between screen and © Interactive and
definitions non-interactive
© Always interactive © Scriptable
© Slow startup © Fast startup)

T. Hahn, Symbolic Programming in HEP —p.3

myAbs([x_] := -x /; Negative[x]

We get:
myAbs[3] = 3
myAbs[-5] = 5
myAbs[2 + 3 I] = myAbs[2 + 3 I]
— no rule for complex arguments so far
myAbs [x] = myAbs[x]
— no match either

T. Hahn, Symbolic Programming in HEP —p .4

e applied once using Rules:

a+b+c/.a->2cme= Db+ 3c

Transformations can be Immediate or Delayed. Consider:

{r, r} /. r -=> Random[] = {0.823919, 0.823919}
{r, r} /. r :> Random[] = {0.356028, 0.100983}

T. Hahn, Symbolic Programming in HEP —p.5

FullForm[expr] == Plus[a, b]

Head [expr] == Plus
[[0]]
(1]
2]

expr
expr
expr

¥ Plus
I a
I b

— same as Head [expr]

T. Hahn, Symbolic Programming in HEP —p.6

T. Hahn, Symbolic Programming in HEP —p.7

buiyoiow uwidlind

bulwwnibold pajualio-)si]

Apply[Plus, {a, b, c}] = a + b + c
Plus @@ {a, b, c} = a + b + ¢ — short form

Pure Functions are a concept from formal logic. A pure
function is defined ‘on the fly’:

(# + 1)& /@ {4, 8} = {5, 9}

The # (same as #1) represents the first argument, and the &
defines everything to its left as the pure function.

T. Hahn, Symbolic Programming in HEP —p.8

Do[sum += tab[[i]], {i, Length[tabl}];

sum]
test2 :=|Apply[Plus, tab] .
Here are the timings: -
Timing[test1] [[1]] == 8.29 Second -
Timing[test2] [[1]] = 1.75 Second O
H
H

T. Hahn, Symbolic Programming in HEP —p.9

Prepend and Append add elements at the front or back:

Prepend([r[a, b], c] = r[c, a, b]
Append[r[a, b], c] = r[a, b, c]

Insert and Delete insert and delete elements:

Insert[hl[a, b, cl], x, {2}] = hla, x, b, c]
Deletel[h[a, b, c], {2}] = hla, c]

T. Hahn, Symbolic Programming in HEP —p.10

AppendTo[res, tab[[i]]]

| 6&[£es = {res, tab[[i]]i, {i, Length[tabl}];
Flatten[res]]

.

The timings: -
Timing[test1] [[1]] = 19.47 Second

Timing[test2] [[1]] = 0.11 Second -

N

N

N

T. Hahn, Symbolic Programming in HEP —p.11

T. Hahn, Symbolic Programming in HEP —p.12

test1 has to re-write the list every time an element is added:
{+ {1} {1,2} {1,2,3}

test2 does that only once at the end with Flatten:

>

f I 1 I_I_I
{+ {3 1r {{{},1}1,2}
-, T ' |

{{{{},1},2},3} ...

>

T. Hahn, Symbolic Programming in HEP —p.13

X_ — pattern wit ead h
x_:1 — default value
x_"7Number(— conditional pattern
x_ /; x > 0 — conditional pattern

Patterns take function overloading to the limit, i.e. functions
behave differently depending on details of their arguments:

Attributes[Pair] = {Orderless}
Pair[p_Plus, j_] := Pair([#, jl& /@ p
Pair[n_?NumberQ i_, j_] := n Pair[i, j]

T. Hahn, Symbolic Programming in HEP —p.14

:Begin:

:Function: mAO

:Pattern: AO[m_, opt___Rule]

:Arguments: {N[m], N[Delta /. {opt} /. Options[AO]],
N[Mudim /. {opt} /. Options[AO]]}

:ArgumentTypes: {Real, Real, Real} -

:ReturnType: Real

:End.: =
o

:Evaluate: Options[AO] = {Delta -> 0, Mudim -> 1} :

T. Hahn, Symbolic Programming in HEP —p.15

T. Hahn, Symbolic Programming in HEP —p.16

Load in Mathematica with Install["program"].

For even more details see arXiv:1107.4379.

T. Hahn, Symbolic Programming in HEP —p.17

AppendTo [$Echo, "stdout"];
<< FeynArts°
top = CreateTopologiesl[...];

EOF_ end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.

T. Hahn, Symbolic Programming in HEP —p.18

#! /bin/sh
math -run "argl=$1" -run "arg2=3%$2" ... << \END

END

e Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: -x flag makes shell echo every statement,
#! /bin/sh -x

T. Hahn, Symbolic Programming in HEP —p.19

e Script, Distribute, Automate
e Crunch numbers outside Mathematica
But: don’t overdo it.

If your calculation takes 5 min in total, don’t waste time
improving.

T. Hahn, Symbolic Programming in HEP —p.20

ParallelMap[myfunc, data];

Parallel Kernels count toward Sublicenses.
Sublicenses = 8 x # interactive Licenses.

T. Hahn, Symbolic Programming in HEP —p.21

DistributeDefinitions DistributeContexts

Automatic parallelization (so-so success):
Parallelize [expr]

‘Intrinsic’ functions (e.g. Simplify) not parallelizable.

Multithreaded computation partially automatic (OMP) for
some numerical functions, e.g. Eigensystem.

Take care of side-effects of functions.

Usual concurrency stuff (write to same file, etc).
. B B

T. Hahn, Symbolic Programming in HEP — p.22

e Showstopper: Functions not available in Fortran/C, e.g.
NDSolve, Zeta. Maybe 3rd-party substitute (GSL, Netlib).

e Mathematica has built-in C-code generator, e.g.

myfunc = Compile[{{x}}, x"2 + Sin[x"2]];
Export ["myfunc.c", myfunc, "C"]

But no standalone code: shared object for use with
Mathematica (i.e. also needs license).

e FormCalc’s code-generation functions produce optimized
standalone code. EEEE

T. Hahn, Symbolic Programming in HEP —p.23

opens file.F as a Fortran file for writing,

e WriteExpr[handle, {var -> expr, .. .}]
writes out Fortran code which calculates expr and stores
the result in var,

e Close[handle]
closes the file again.

T. Hahn, Symbolic Programming in HEP —p.24

var = par
var = var + part?2

e High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

e Many ancillary functions make code generation versatile
and highly automatable, such that the resulting code
needs few or no changes by hand:

VarDecl, ToDoLoops, IndexIf, FileSplit, ...

T. Hahn, Symbolic Programming in HEP — p.25

e Loops and tests handled through macros, e.g.
LOOP(var, 1,10,1) ... ENDLOOP (var)

¢ Introduced data types RealType and ComplexType for
better abstraction, can e.g. be changed to different
precision.

T. Hahn, Symbolic Programming in HEP —p.26

WriteExpr[h, ' pr,
Close[h]

Fortran — Mathematica:

Get http://feynarts.de/formcalc/FortranGet.tm
Compile: mcc -o FortranGet FortranGet.tm
Load in Mathematica: Install["FortranGet"]
Read Fortran code: FortranGet["file.F"]

m H B N
T. Hahn, Symbolic Programming in HEP —p.27

e Efficient compilers available (commercial + free).
e Straightforward to link with other languages, e.g. C/C++.

More discussion:

http://moreisdifferent.com/2015/07/16/
why-physicsts-still-use-fortran/

T. Hahn, Symbolic Programming in HEP —p.28

ToForm < file.m > file.frm
FORM — Mathematica:
e Get http://feynarts.de/formcalc/FormGet.tm
e Compile it with mcc -0 FormGet FormGet.tm
e Load it in Mathematica with Install["FormGet"]

e Read a FORM output file;: FormGet ["file.out"]
Pipe output from FORM: FormGet ["!form file.frm"]

T. Hahn, Symbolic Programming in HEP —p.29

Numerics, Symbolics
Springer, 2004-2006.

e Andrei Grozin

Introduction to Mathematica for
Physicists
Springer, 2013.

T. Hahn, Symbolic Programming in HEP —p.30

Abbreviationing
Easy in Mathematica, new in FORM.

o Simplification of Color Structures
Different approaches.

e Calculation of a Fermion Trace
Built-in in FORM, complicated in Mathematica.

e Tensor Reduction

T. Hahn, Symbolic Programming in HEP - p.31

e Herbert Pietschmann
Formulae and Results in Weak Interactions
Springer (Austria) 2nd ed., 1983.

e Andrei Grozin
Using REDUCE in High-Energy Physics
Cambridge University Press, 1997.

T. Hahn, Symbolic Programming in HEP —p.32

antisymmetric object, can be written with the c-tensor:

n
detA — Z glllzlnAlllAlzz S Ainn

i]_,...,in:l

In practice, the s-tensor is usually contracted, e.qg. with vectors.
We will adopt the following notation to avoid dummy indices:

Envpo Pt g 1Ps” = e(p,q,1,5).

T. Hahn, Symbolic Programming in HEP — p.33

(* otherwise sort the arguments into canonical order: *)

Epslargs__] := Signature[{args}] Eps@@ Sort[{args}] /;
'0rderedQ[{args}]

T. Hahn, Symbolic Programming in HEP —p.34

p1+ Py +p3+2p1p2 — 2paps — 2p1ps +m
whereas if p1 + p2» = p3 + p4 we could have instead

1
py+m?

d—

In Mathematica: justdod /.pl + p2 - p3 -> p4.
Problem: FORM cannot replace sums.

T. Hahn, Symbolic Programming in HEP —p.35

shortest expression (in FORM)?
Solution: add the number of terms of each argument, i.e.

{x,y,z} = {x,y,z,ny,ny,n;}.

Then sort 7,, n,, 1., but when exchanging 7, and r,,
exchange also 2 and b:

symm ‘foo’ (4,1) (5,2) (6,3);
This unconventional sort statement is rather typical for FORM.

T. Hahn, Symbolic Programming in HEP —p.36

* order according to the nterms
symm ‘foo’ (4,1) (5,2) (6,3);

* choose shortest argument
id ‘foo’([x]?, 7a) = ‘foo’([x]);

#endprocedure

T. Hahn, Symbolic Programming in HEP —p.37

e essential function here is Unique wi
are introduced. For example,

Unique["test"]

generates e.g. the symbol test1, which is guaranteed not to
be in use so far.

which new symbols

The Module function which implements lexical scoping in fact
uses Unique to rename the symbols internally because
Mathematica can really do dynamical scoping only.

HE B B B
T. Hahn, Symbolic Programming in HEP —p.38

AbbrList[] := Cases[DownValues[abbr],
[[_[£f_11, s_Symbol]l -> s -> f]

(x restore full expression *) -
Restorel[expr_] := expr /. AbbrList[] -
O

O

O

O

T. Hahn, Symbolic Programming in HEP —p.39

toPolynomial onlyfunctions acc;

.sort

* print abbreviations & abbreviated expr -
=

#write "JX"

print +s; .
u
N
u

T. Hahn, Symbolic Programming in HEP —p.40

Natural Repres

~ T, =SUNT[a,i,]

~ T&T¢, = SUNTSunli, j,k, (]

Adjoint Repres

~ fo%¢ = SUNF[a,b,c]

AN
o

b d

~ fobx fxed — SUNF[a,b,c,d]

T. Hahn, Symbolic Programming in HEP —p.41

e SUNT[7,/] = 5i]'

e SUNT[a,b, .. .,0,0] :Tr(T“Tb..-)

This notation again avoids unnecessary dummy indices.
(Mainly namespace problem.)

For purposes such as the “large-N. limit” people like to use
SU(N) rather than an explicit SU(3).

. B BN BN
T. Hahn, Symbolic Programming in HEP — p.42

Dirac spinors, but can be generalized to any
finite-dimensional matrix space [hep-ph/0412245].

For SU(N) (color) reordering, we need

1 1
1y = > <5i€5kj — N‘Sij‘SkE) :

T. Hahn, Symbolic Programming in HEP — p.43

e expect SUNT with indices of
external particles to remain.

For a Squared Amplitude: e use the Fierz identity to get rid
---------------- ; of all SUNT objects,

i ; i
>mm<>m< e expect SUNT to vanish, color
SMONS M factors (numbers) only.

For “hand” calculations, a pictorial version of this algorithm
exists in the literature. EEEN

T. Hahn, Symbolic Programming in HEP — p.44

repeat;
once SUNT(?a, [al?, [bl?7, [il?, [j1?) =
SUNT(?a, [al, [i], DUMMY) * SUNT([b], DUMMY, [jI1);
sum DUMMY ;
endrepeat;

* apply the Fierz identity

id SUNT([al?, [il?, [jl?) * SUNT([al?, [kl?, [1]7?) =
1/2 » SUNT([i], [1]) = SUNT([jl, [k]) -
1/2/(‘SUNN’) = SUNT([i], [j]) =* SUNT([k], [1]);

| HE B BN
T. Hahn, Symbolic Programming in HEP —p.45

b) Contraction on the same chain:

(A| T%|B| T |C) :%<<A|C>Tr8—%<A\B\C>). .

T. Hahn, Symbolic Programming in HEP —p.46

—_—_——) - —_——)

(sunT[t1, t4, i, 1] sunT[tB t2 k, jl -
sunT[t1, t2, i, j] sunT[t3, t4, k, 1]1/SUNN)/2

(* introduce dummy indices for the traces *) -
sunTracela__] := sunT[a, #, #]&[Unique["col"]] N
|

n

m

m

T. Hahn, Symbolic Programming in HEP —p.47

+ Quo Ir yvyp - -

This algorithm is recursive in nature, and we are ultimately
left with

Tr1=4.

(Note that this 4 is not the space-time dimension, but the
dimension of spinor space.)

H B N
T. Hahn, Symbolic Programming in HEP —p.48

T. Hahn, Symbolic Programming in HEP —p.49

(42 =m3)((9 — p)?> —m3)

Such tensorial integrals are rather unwieldy in practice,
therefore they are reduced to linear combinations of
Lorentz-covariant tensors, e.g.

Buv(p) = Boo(p) §uv + B11(p) pupv -

It is the coefficient functions Byy and B;; which are

implemented in a library like LoopTools.
. B B

T. Hahn, Symbolic Programming in HEP — p.50

The next step is to take out ¢,,,’s in all possible ways. We do
this in form of a sum:

n
. 1
Nu1.--1un — Z 7'((0) Z 8viva " 8vi1vi Nul---un\‘/l---vi
i=024,... all {vq,...,v;}

E{le---/lin}

The 7(0)" keeps track of the indices of the tensor coefficients,
i.e. it later provides the two zeros for every g, in the index,
as in Dgo1o.

H E E N

T. Hahn, Symbolic Programming in HEP — p.51

The temporary function v keeps its argument, the ‘tagged’
momentum p, separate from the rest of the amplitude.

Now add the indices of N, ,,, to the momentum in T:
T(P) Nty = P Pran -
Finally, collect all 77’s into the tensor-coefficient index.

T. Hahn, Symbolic Programming in HEP — p.52

Coi(MOM([p1]), MOM([p2] - [p1l), MOM([p2]), 7a);

* expand momentum
repeat id TMP([p1]?) * NUM([mul?, ?a) =
d_([p1], [mul) * NUM(7a) * TMP([p1l);

* collect the indices
chainin pave;

T. Hahn, Symbolic Programming in HEP —p.53

tens[i_, _]J[] := C0@ Sort[Flatten[i]]

FindTensors[mu_, p_] :=

Block[{tenslist},
tenslist = tens[{}, MapIndexed[List, pl]@Q mu;
Collect[Plus@@ Flatten[tenslist], _C]

]

T. Hahn, Symbolic Programming in HEP —p.54

e Nontrivial renormalization.
Software design so far:
e Mostly ‘monolithic’ (one package does everything).

e Often controlled by parameter cards, not easy to use
beyond intended purpose.

e May want to/must use other packages.

T. Hahn, Symbolic Programming in HEP —p.55

in gaugeless approximation at p> = 0 at O(cxf).
@ 1L diagrams with insertions of 1L counterterms.
® 2L counterterms for @,

@ 2L tadpoles T<2>, T1<42)’ TI<42> at O(«?) appearing in G,

m H B N
T. Hahn, Symbolic Programming in HEP —p.56

T. Hahn, Symbolic Programming in HEP —p.57

O—glmod < MSSMCT.mod

model file preparation simplification
SRl /-code <— 6-comb <— < FormCalc
code generation combination of results calculation of =
renorm. constants
m
|
|
|

T. Hahn, Symbolic Programming in HEP —p.58

arg?2 = 0 for virtua lagrams,
1 for IL diagrams with IL counterterms.

¢ Inputs/outputs defined in first few lines, e.g.
in=m/$1/2-prep.$2
out=m/$1/3-calc.$2

e Symbolic output + log files go to ‘m’ subdirectory.
Log file = Output file + .1og.gz

e Fortran code goes to ‘f’ subdirectory.

T. Hahn, Symbolic Programming in HEP —p.59

W -z H
@ Keep M, and v finite.

Must set 7, = 0 so that O(«?) corrections form
supersymmetric and gauge-invariant subset.

Most efficient to modify Feynman rules (not ®, though):
e Load MSSMCT.mod model file.
e Modify couplings, remove zero ones.
e Write out MSSMCTgl.mod model file.

T. Hahn, Symbolic Programming in HEP —p.60

sel[O][S[_] -> S[1] = { ; ' 2 1 w 2 1 'c 2

t[3] && htb[6], 3 g 2

t[3] && tb[6], R - 5

t[3] && tb[6], s 2 AP A 8

t(3] &k t[4) 8% heblS], A | 4 e o)

t[3] && htb[5]6], P E L m

t[3] && htb[5], T“ i i

t[B] && t[5] , 4 5 : /g\ |

t[5] && nht[3]4], — @ BEa -

t[31415] && ht[31415] } 3.6 : ’ k/ -
T7 T8 T9 .

T. Hahn, Symbolic Programming in HEP —p.61

T. Hahn, Symbolic Programming in HEP —p.62

U Uy + U Uy =1, U U, + Uy Uy, =0,
ulzllikz + u22u52 =1, u12uik1 + UZzu;1 = 0.

Problem: Simplify will rarely arrange the U’s in just the way
that these rules can be applied directly.

Solution: Introduce auxiliary symbols which immediately
deliver the r.h.s. once Simplify considers the Lh.s., i.e.
increase the ‘incentive’ for Simplify to use the r.h.s.

But: Upvalues work only one level deep.
H B BN

T. Hahn, Symbolic Programming in HEP — p.63

and formulate unitarity for the UCSTt:

UCst [2,1]
UCSt [2,2]

UCst [1,2];
UCsf[1,1];

UCSf[3,2] = -UCSf[3,1];
UCSfC[3,2] = -UCSfC[3,1];
UCSf[2,3] = -UCSf[1,3];
UCsSfC[2,3] = -UCSfCI[1,3];

T. Hahn, Symbolic Programming in HEP —p.64

T. Hahn, Symbolic Programming in HEP —p.65

e Introduce DiagMark[m;] where 1, = masses in loop
in FeynArts output.

e Few simplifications can be made between parts with
different DiagMark = Can apply simplification as

Collect[amp, _DiagMark, simpfunc]
e Much faster.

T. Hahn, Symbolic Programming in HEP —p.66

e Expand in ¢, collect powers for easier handling later, e.g.

{|aMf1[3,3] -> RC[-1, dMf1[-1,3,3]] +
RC[0, dMf1[0,3,3]],

- expansion

{dMf1[-1,3,3] —> ..
dMf1[0,3,3] —> ..

*)

L}

- actual expressions for e-coeffs

}

T. Hahn, Symbolic Programming in HEP —p.67

e Perform final simplification.

T. Hahn, Symbolic Programming in HEP —p.68

e Total final code size: 350 kBuytes.

More details in arXiv:1508.00562.

T. Hahn, Symbolic Programming in HEP —p.69

ake advantage of many packages, convert if necessary.
e Scripting helps combine different packages.
e Crunch numbers outside of Mathematica.

T. Hahn, Symbolic Programming in HEP —p.70

	Mathematica Components
	{	t <rant>}Why I hate the Frontend{	t </rant>}
	Expert Systems
	Immediate and Delayed Assignment
	Almost everything is a List
	The Pillars of Mathematica
	Map, Apply, and Pure Functions
	List-oriented Programming
	List Operations
	More Speed Bumps
	Reference Count
	Reference Count and Speed
	Patterns
	MathLink programming
	MathLink programming
	MathLink programming
	Scripting Mathematica
	Scripting Mathematica
	Commercial Software?
	Parallel Kernels
	Parallel Functions
	Crunch Numbers outside Mathematica
	Code-generation Functions
	Code generation
	C Output
	Mathematica $leftrightarrow $ Fortran
	Why Fortran?
	FORM $leftrightarrow $ Mathematica
	Books
	List of Examples
	Reference Books, Formula Collections
	Antisymmetric Tensor
	Antisymmetric Tensor in Mathematica
	Momentum Conservation
	Momentum Conservation in FORM
	Momentum Conservation in FORM
	Abbreviationing
	Abbreviationing in Mathematica
	Abbreviationing in FORM
	Color Structures
	Unified Notation
	Fierz Identities
	Cvitanovich Algorithm
	Color Simplify in FORM
	Translation to Color-Chain Notation
	Color Simplify in Mathematica
	Fermion Trace
	Fermion Trace in Mathematica
	Tensor Reduction
	Tensor Reduction Algorithm
	Tensor Reduction Algorithm
	Tensor Reduction in FORM
	Tensor Reduction in Mathematica
	More Complex Calculations
	Example: $O (alpha _t^2)$
MSSM Higgs-mass corrections
	Template for Calculations
	Steps of the Calculation
	Script Structure
	Step 0: Gaugeless Limit
	Step 1: Diagram Generation
	Step 2: Preparation for Tensor Reduction
	Efficiently Exploit Unitarity in Mathematica
	Efficiently Exploit Unitarity in Mathematica
	Step 3: Tensor Reduction
	Step 4: Simplification
	Step 5: Calculation of Renormalization Constants
	Step 6: Combination of Results
	Step 7: Code Generation
	Summary

