Symbolic Programming in HEP

Thomas Hahn

Max-Planck-Institut für Physik München

http://wwwth.mpp.mpg.de/members/hahn \rightarrow Lecture Material

"Mathematica"

http://wwwth.mpp.mpg.de/members/hahn/intro_math.pdf

FRONTEND:

© Nice formatting
© Documentation
© Ease of use
(․ No obvious relation between screen and definitions
(2) Always interactive
© Slow startup

Kernel:

Text interface
No pretty-printing
() 1-to-1 relation to definitions
() Interactive and non-interactive
() Scriptable
() Fast startup

In technical terms, Mathematica is an Expert System. Knowledge is added in form of Transformation Rules. An expression is transformed until no more rules apply.

Example:

myAbs[x_] := x /; NonNegative[x]
myAbs[x_] := -x /; Negative[x]

We get:

```
myAbs [3] was 3
myAbs[-5] res 5
myAbs[2 + 3 I] res myAbs[2 + 3 I]
```

- no rule for complex arguments so far
myAbs [x] res myAbs [x]
- no match either

Transformations can either be

- added "permanently" in form of Definitions,
norm[vec_] := Sqrt[vec . vec]
- applied once using Rules:

$$
a+b+c / a b-2 c \text { b } b+3 c
$$

Transformations can be Immediate or Delayed. Consider:

$$
\begin{aligned}
& \{r, r\} / . r \rightarrow \text { Random[] }\{0.823919,0.823919\} \\
& \{r, r\} / . r:>\text { Random }[] \text {, }\{0.356028,0.100983\}
\end{aligned}
$$

All Mathematica objects are either Atomic，e．g．

Head［133］re9 Integer
 Head［a］res Symbol

or（generalized）Lists with a Head and Elements：

```
expr = a + b
FullForm[expr] 咹 Plus[a, b]
Head[expr] nes Plus
expr[[0]] 咏 Plus - same as Head[expr]
expr[[1]] 县 a
expr[[2]] res b
```


Map applies a function to all elements of a list:

Apply exchanges the head of a list:

```
Apply[Plus, {a, b, c}] a + b + c
Plus @@ {a, b, c} re9 a + b + c -short form
```

Pure Functions are a concept from formal logic. A pure function is defined 'on the fly':

$$
(\#+1) \& / @\{4,8\}
$$

The \# (same as \#1) represents the first argument, and the \& defines everything to its left as the pure function.

Using Mathematica's list-oriented commands is almost always of advantage in both speed and elegance.

Consider:

$$
\begin{aligned}
& \text { tab } \left.=\text { Table[Random }[],\left\{10^{\wedge} 7\right\}\right] ; \\
& \text { test1 := Block[\{sum }=0\} \text {, } \\
& \text { Do [sum }+=\text { tab[[i]], \{i, Length[tab]\}]; } \\
& \text { sum] } \\
& \text { test2 }:=\text { Apply[Plus, tab] }
\end{aligned}
$$

Here are the timings:

```
Timing[test1][[1]] 抵 8.29 Second
Timing[test2][[1]] wes 1.75 Second
```


Flatten removes all sub-lists:

Flatten $[f[x, f[y], f[f[z]]]]$ 几
Sort and Union sort a list. Union also removes duplicates:

```
Sort[{3, 10, 1, 8}] Ne9 {1, 3, 8, 10}
```


Prepend and Append add elements at the front or back:

$$
\begin{aligned}
& \text { Prepend }[r[a, b], c] \quad r[c, a, b] \\
& \text { Append }[r[a, b], c]
\end{aligned}
$$

Insert and Delete insert and delete elements:

```
Insert[h[a, b, c], x, {2}] re% h[a, x, b, c]
Delete[h[a, b, c], {2}] reg h[a, c]
```


Consider:

```
tab = Table[Random[], {10^5}];
test1 := Block[ {res = {}},
    Do[AppendTo[res, tab[[i]]], {i, Length[tab]} ];
    res ]
test2 := Block[ {res = {}},
    Do[res = {res, tab[[i]]}, {i, Length[tab]} ];
    Flatten[res] ]
```

The timings:
Timing[test1][[1]] 19 19.47 Second
Timing[test2][[1]] 1 res 0.11 Second

Assignments that don't change the content make no copy but just increase the Reference Count.


```
test1 := ...
    . . . AppendTo[res, tab[[i]]] ...
    res
test2 :=
    ... res = {res, tab[[i]]} ...
    Flatten[res]
```

test1 has to re-write the list every time an element is added:
\{\} \{1\}
$\{1,2\}$
$\{1,2,3\}$
test2 does that only once at the end with Flatten:

$$
\underbrace{\}} \underset{\sim}{\{\}, 1\}} \underset{\sim}{\{\{\}, 1\}, 2\}}\{\{\{\}, 1\}, 2\}, 3\} \ldots
$$

One of the most useful features is Pattern Matching:

- matches one object
- matches one or more objects
- matches zero or more objects
- named pattern (for use on the r.h.s.)
- pattern with head h
- default value

X_?NumberQ - conditional pattern
$\mathrm{X}_{-} /$; $\mathrm{X}>0$ - conditional pattern
Patterns take function overloading to the limit, i.e. functions behave differently depending on details of their arguments:

```
Attributes[Pair] = {Orderless}
Pair[p_Plus, j_] := Pair[#, j]& /@ p
Pair[n_?NumberQ i_, j_] := n Pair[i, j]
```

MathLink is Mathematica's API to interface with C and $\mathrm{C}_{++ \text {. }}$ J/Link offers similar functionality for Java.

A MathLink program consists of three parts:

a) Declaration Section
:Begin:
:Function: mAO
:Pattern: A0 [m_, opt__Rule]
:Arguments: \{N[m], N[Delta /. \{opt\} /. Options [AO]],
N[Mudim /. \{opt\} /. Options [AO]]\}
:ArgumentTypes: \{Real, Real, Real\}
:ReturnType: Real
: End:
:Evaluate: Options [AO] = \{Delta -> 0, Mudim -> 1\}

b) C code implementing the exported functions

```
#include "mathlink.h"
static double mAO(const double m,
        const double delta, const double mudim) {
    return (m == 0) ? 0 : m*(1 - log(m/mudim) + delta);
}
```

c) Boilerplate main function

```
int main(int argc, char **argv) {
    return MLMain(argc, argv) ;
}
```

Compile with mcc instead of cc. Load in Mathematica with Install["program"].

For even more details see arXiva1107.4379.

Efficient batch processing with Mathematica:

Put everything into a script, using sh's Here documents:

```
#! /bin/sh
math << \_EOF_
    AppendTo[$Echo, "stdout"];
    << FeynArts'
    top = CreateTopologies[...];
_EOF_
```

 shell Magic
 start Here document (note the V)
 end Here document

Everything between "<< \tag" and "tag" goes to Mathematica as if it were typed from the keyboard.

Note the "\" before tag, it makes the shell pass everything literally to Mathematica, without shell substitutions.

- Everything contained in one compact shell script, even if it involves several Mathematica sessions.
- Can combine with arbitrary shell programming, e.g. can use command-line arguments efficiently:
\#! /bin/sh
math -run "arg1=\$1" -run "arg2=\$2" ... << \END

END

- Can easily be run in the background, or combined with utilities such as make.

Debugging hint: -x flag makes shell echo every statement, \#! /bin/sh -x

Mathematica licenses cost money ($\sim 5 \mathrm{k} \in /$ /license).
While your Mathematica program runs, it blocks one license, so don't 'just' leave your Mathematica session open.

- Parallelize
- Script, Distribute, Automate
- Crunch numbers outside Mathematica

But: don't overdo it.
If your calculation takes 5 min in total, don't waste time improving.

Mathematica has built-in support for parallel Kernels:

LaunchKernels [];
ParallelNeeds["mypackage‘"];
data $=$ \ll mydata;
ParallelMap[myfunc, data];
Parallel Kernels count toward Sublicenses. \# Sublicenses = 8×\# interactive Licenses.

- More functions:

ParallelArray	ParallelEvaluate	ParallelNeeds
ParallelSum	ParallelCombine	ParallelTable
ParallelDo	ParallelProduct	ParallelTry
ParallelMap	ParallelSubmit	
DistributeDefinitions	DistributeContexts	

- Automatic parallelization (so-so success): Parallelize [expr]
- 'Intrinsic' functions (e.g. Simplify) not parallelizable.
- Multithreaded computation partially automatic (OMP) for some numerical functions, e.g. Eigensystem.
- Take care of side-effects of functions.
- Usual concurrency stuff (write to same file, etc).
- Conversion of Mathematica expression to Fortran/C painless.
- Optimized output can easily run faster than in Mathematica.
- Showstopper: Functions not available in Fortran/C, e.g. NDSolve, Zeta. Maybe 3rd-party substitute (GSL, Netlib).
- Mathematica has built-in C-code generator, e.g.

```
myfunc = Compile[{{x}}, x^2 + Sin[x^2]];
Export["myfunc.c", myfunc, "C"]
```

But no standalone code: shared object for use with Mathematica (i.e. also needs license).

- FormCalc's code-generation functions produce optimized standalone code.

FormCalc's code-generation functions are public and disentangled from the rest of the code. They can be used to write out an arbitrary Mathematica expression as optimized Fortron or C code:

- handle = OpenCode["file.F"] opens file.F as a Fortran file for writing,
- WriteExpr [handle, \{var -> expr, . . \}] writes out Fortran code which calculates expr and stores the result in var,
- Close [handle] closes the file again.

Traditionally: Output in Fortran.

Code generator is meanwhile rather sophisticated, e.g.

- Expressions too large for Fortran are split into parts, as in

```
var = part1
var = var + part2
```

- High level of optimization, e.g. common subexpressions are pulled out and computed in temporary variables.
- Many ancillary functions make code generation versatile and highly automatable, such that the resulting code needs few or no changes by hand: VarDecl, ToDoLoops, IndexIf, FileSplit, ...
- Output in C99 makes integration into C/C++ codes easier:
SetLanguage ["C"]

Code structured by e.g.

- Loops and tests handled through macros, e.g. LOOP (var, 1, 10, 1) ... ENDLOOP (var)
- Introduced data types RealType and ComplexType for better abstraction, can e.g. be changed to different precision.

Mathematica \rightarrow Fortran:

- Get FormCalc from http://feynarts.de/formcalc
- Write out arbitrary Mathematica expression:

```
h = OpenCode["file"]
WriteExpr[h, {var -> expr, ...}]
Close[h]
```

Fortran \rightarrow Mathematica:

- Get http://feynarts.de/formcalc/FortranGet.tm
- Compile: mcc -o FortranGet FortranGet.tm
- Load in Mathematica: Install["FortranGet"]
- Read Fortran code: FortranGet["file.F"]
"I don't know what the programming language of the year 2000 will look like, but I know it will be called Fortran."
- C.A.R. Hoare, ca. 1982
- 'Best' language for number crunching.
- Efficient compilers available (commercial + free).
- Straightforward to link with other languages, e.g. C/C++.

More discussion:

http://moreisdifferent.com/2015/07/16/
why-physicsts-still-use-fortran/

Mathematica \rightarrow FORM:

- Get FormCalc from http://feynarts.de/formcalc
- After compilation the ToForm utility should be in the executables directory (e.g. Linux-x86-64):

ToForm < file.m > file.frm

FORM \rightarrow Mathematica:

- Get http://feynarts.de/formcalc/FormGet.tm
- Compile it with mcc -o FormGet FormGet.tm
- Load it in Mathematica with Install["FormGet"]
- Read a FORM output file: FormGet ["file. out"] Pipe output from FORM: FormGet["!form file.frm"]
- Michael Trott The Mathematica Guidebook for \{Programming, Graphics, Numerics, Symbolics\} (4 vol) Springer, 2004-2006.

- Andrei Grozin

Introduction to Mathematica for Physicists Springer, 2013.

- Antisymmetric Tensor Built-in in FORM, easy in Mathematica.
- Application of Momentum Conservation Easy in Mathematica, complicated in FORM.
- Abbreviationing

Easy in Mathematica, new in FORM.

- Simplification of Color Structures Different approaches.
- Calculation of a Fermion Trace Built-in in FORM, complicated in Mathematica.
- Tensor Reduction
- VI. Borodulin et al. CORE (Compendium of Relations) hep-ph/9507456 (v2), arXiv:1702.08246 (v3).
- Herbert Pietschmann Formulae and Results in Weak Interactions Springer (Austria) 2nd ed., 1983.
- Andrei Grozin Using REDUCE in High-Energy Physics Cambridge University Press, 1997.

The Antisymmetric Tensor in n dimensions is denoted by $\varepsilon_{i_{1} i_{2} . . i i_{n}}$. You can think of it as a matrix-like object which has either $-1,0$, or 1 at each position.

For example, the Determinant of a matrix, being a completely antisymmetric object, can be written with the ε-tensor:

$$
\operatorname{det} A=\sum_{i_{1}, \ldots, i_{n}=1}^{n} \varepsilon_{i_{1} i_{2} \ldots i_{n}} A_{i_{1} 1} A_{i_{2} 2} \cdots A_{i_{n} n}
$$

In practice, the ε-tensor is usually contracted, e.g. with vectors. We will adopt the following notation to avoid dummy indices:

$$
\varepsilon_{\mu \nu \rho \sigma} p^{\mu} q^{v} r^{\rho} S^{\sigma}=\varepsilon(p, q, r, s) .
$$

Eps [_---, p p, ---, p_, ---] := 0
(* implement linearity: *)
Eps [a---, p_Plus, b---] := Eps [a, \#, b] $\& /$ © p
Eps [a_--, n_{-}?NumberQ $\left.\mathrm{r}_{-}, \mathrm{b}_{---}\right]:=\mathrm{n} \operatorname{Eps}[\mathrm{a}, \mathrm{r}, \mathrm{b}]$
(* otherwise sort the arguments into canonical order: *)
Eps[args_-_] := Signature[\{args\}] Eps@@ Sort[\{args\}] /;
! OrderedQ[\{args\}]

Problem: Proliferation of terms in expressions such as

$$
\begin{aligned}
d & =\frac{1}{\left(p_{1}+p_{2}-p_{3}\right)^{2}+m^{2}} \\
& =\frac{1}{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+2 p_{1} p_{2}-2 p_{2} p_{3}-2 p_{1} p_{3}+m^{2}}
\end{aligned}
$$

whereas if $p_{1}+p_{2}=p_{3}+p_{4}$ we could have instead

$$
d=\frac{1}{p_{4}^{2}+m^{2}}
$$

In Mathematica: just do d /. p1 + p2 - p3 -> p4. Problem: FORM cannot replace sums.

Idea: for each expression x, add and subtract a zero, i.e. form $\{x, y=x+0, z=x-0\}$, where e.g. $0=p_{1}+p_{2}-p_{3}-p_{4}$, then select the shortest expression. But: how to select the shortest expression (in FORM)?
Solution: add the number of terms of each argument, i.e.

$$
\{x, y, z\} \rightarrow\left\{x, y, z, n_{x}, n_{y}, n_{z}\right\} .
$$

Then sort n_{x}, n_{y}, n_{z}, but when exchanging n_{a} and n_{b}, exchange also a and b :

$$
\text { symm 'foo' }(4,1)(5,2)(6,3) \text {; }
$$

This unconventional sort statement is rather typical for FORM.
\#procedure Shortest(foo)
id 'foo' $([x] ?)=$ 'foo' $([x],[x]+$ 'MomSum', $[x]-$ 'MomSum');

* add number-of-terms arguments
id 'foo'([x]?, [y]?, [z]?) = 'foo'([x], [y], [z], nterms_([x]), nterms_([y]), nterms_([z]));
* order according to the nterms symm 'foo' $(4,1)(5,2)(6,3)$;
* choose shortest argument
id 'foo' $([x] ?, ? a)=$ ' $f o o$ ' $([x])$;
\#endprocedure

One of the most powerful tricks to both reduce the size of an expression and reveal its structure is to substitute subexpressions by new variables.

The essential function here is Unique with which new symbols are introduced. For example,

Unique ["test"]
generates e.g. the symbol test1, which is guaranteed not to be in use so for.

The Module function which implements lexical scoping in fact uses Unique to rename the symbols internally because Mathematica can really do dynamical scoping only.
\$AbbrPrefix = "c"
abbr[expr_] := abbr[expr] = Unique[\$AbbrPrefix]
(* abbreviate function *)
Structure[expr_, x_{-}] := Collect[expr, x, abbr]
(* get list of abbreviations *)
AbbrList [] := Cases [DownValues [abbr],
[[_[f_]], s_Symbol] -> s -> f]
(* restore full expression *)
Restore[expr_] := expr /. AbbrList []

* collect w.r.t. some function
b Den;
.sort
collect acc;
* introduce abbreviations for prefactors
toPolynomial onlyfunctions acc;
.sort
* print abbreviations \& abbreviated expr
\#write "\%X"
print +s;

In Feynman diagrams four types of Color structures appear:

The SUNF's can be converted to SUNT's via

$$
f^{a b c}=2 \mathrm{i}\left[\operatorname{Tr}\left(T^{c} T^{b} T^{a}\right)-\operatorname{Tr}\left(T^{a} T^{b} T^{c}\right)\right] .
$$

We can now represent all color objects by just SUNT:

- $\operatorname{SUNT}[i, j]=\delta_{i j}$
- $\operatorname{SUNT}[a, b, \ldots, i, j]=\left(T^{a} T^{b} \cdots\right)_{i j}$
- SUNT $[a, b, \ldots, 0,0]=\operatorname{Tr}\left(T^{a} T^{b} \ldots\right)$

This notation again avoids unnecessary dummy indices. (Mainly namespace problem.)

For purposes such as the "large- N_{c} limit" people like to use SU(N) rather than an explicit SU(3).

The Fierz Identities relate expressions with different orderings of external particles. The Fierz identities essentially express completeness of the underlying matrix space.

They were originally found by Markus Fierz in the context of Dirac spinors, but can be generalized to any finite-dimensional matrix space [hep-ph/0412245].

For SU(N) (color) reordering, we need

$$
T_{i j}^{a} T_{k \ell}^{a}=\frac{1}{2}\left(\delta_{i \ell} \delta_{k j}-\frac{1}{N} \delta_{i j} \delta_{k \ell}\right) .
$$

For an Amplitude:

- convert all color structures to (generalized) SUNT objects,
- simplify: apply Fierz identity on all internal gluon lines,
- expect SUNT with indices of external particles to remain.

For a Squared Amplitude:

- use the Fierz identity to get rid of all SUNT objects,
- expect SUNT to vanish, color factors (numbers) only.

For "hand" calculations, a pictorial version of this algorithm exists in the literature.

* introduce dummy indices for the traces
repeat;
once SUNT (?a, 0, 0) = SUNT (?a, DUMMY, DUMMY);
sum DUMMY; endrepeat;
* take apart SUNTs with more than one T repeat;
once $\operatorname{SUNT}(? a,[\mathrm{a}] ?,[\mathrm{~b}] ?,[\mathrm{i}] ?, \quad[j] ?)=$ SUNT(?a, [a], [i], DUMMY) * SUNT([b], DUMMY, [j]);
sum DUMMY;
endrepeat;
* apply the Fierz identity
id SUNT([a]?, [i]?, [j]?) * SUNT([a]?, [k]?, [l]?) = 1/2 * SUNT([i], [l]) * SUNT([j], [k]) 1/2/('SUNN') * SUNT([i], [j]) * SUNT([k], [l]);

In color-chain notation we can distinguish two cases:
a) Contraction of different chains:
$\langle A| T^{a}|B\rangle\langle C| T^{a}|D\rangle=\frac{1}{2}\left(\langle A \mid D\rangle\langle C \mid B\rangle-\frac{1}{N}\langle A \mid B\rangle\langle C \mid D\rangle\right)$,
b) Contraction on the same chain:

$$
\langle A| T^{a}|B| T^{a}|C\rangle=\frac{1}{2}\left(\langle A \mid C\rangle \operatorname{Tr} B-\frac{1}{N}\langle A| B|C\rangle\right) .
$$

(* same-chain version *)
sunT[t1_-_, $\left.a_{-} S y m b o l, ~ t 2_{---}, a_{-}, t 3_{---}, i_{-,} j_{-}\right]:=$
(sunT[t1, t3, i, j] sunTrace[t2] sunT[t1, t2, t3, i, j]/SUNN)/2
(* different-chain version *)
sunT[t1_--, a_Symbol, t2_--, $\left.i_{-}, j_{-}\right] *$
sunT[t3_--, $\left.a_{-}, t 4_{---}, k_{-}, l_{-}\right]$^:=
(sunT[t1, t4, i, l] sunT[t3, t2, k, j] sunT[t1, t2, i, j] sunT[t3, t4, k, l]/SUNN)/2
(* introduce dummy indices for the traces *) sunTrace[a_-] := sunT[a, \#, \#]\&[Unique["col"]]

Leaving apart problems due to γ_{5} in d dimensions, we have as the main algorithm for the 4 d case:

$$
\begin{aligned}
\operatorname{Tr} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \cdots= & +g_{\mu \nu} \operatorname{Tr} \gamma_{\rho} \gamma_{\sigma} \cdots \\
& -g_{\mu \rho} \operatorname{Tr} \gamma_{\nu} \gamma_{\sigma} \cdots \\
& +g_{\mu \sigma} \operatorname{Tr} \gamma_{\nu} \gamma_{\rho} \cdots
\end{aligned}
$$

This algorithm is recursive in nature, and we are ultimately left with

$$
\operatorname{Tr} \mathbb{1}=4
$$

(Note that this 4 is not the space-time dimension, but the dimension of spinor space.)

```
Trace4[mu_, g__] :=
Block[ {Trace4, s = -1},
    Plus@@ MapIndexed[
        ((s = -s) Pair[mu, #1] Drop[Trace4 [g], #2])&,
        {g} ]
]
Trace4[] = 4
```

The loop integrals corresponding to closed loops in a Feynman integral in general have a tensor structure due to integration momenta in the numerator. For example,

$$
B_{\mu \nu}(p)=\int \mathrm{d}^{d} q \frac{q_{\mu} q_{\nu}}{\left(q^{2}-m_{1}^{2}\right)\left((q-p)^{2}-m_{2}^{2}\right)}
$$

Such tensorial integrals are rather unwieldy in practice, therefore they are reduced to linear combinations of Lorentz-covariant tensors, e.g.

$$
B_{\mu \nu}(p)=B_{00}(p) g_{\mu \nu}+B_{11}(p) p_{\mu} p_{\nu}
$$

It is the coefficient functions B_{00} and B_{11} which are implemented in a library like LoopTools.

The first step is to convert the integration momenta in the numerator to an actual tensor, e.g. $q_{\mu} q_{\nu} \rightarrow N_{\mu v}$. FORM has the special command totensor for this:

totensor q1, NUM;

The next step is to take out $g_{\mu \nu}$'s in all possible ways. We do this in form of a sum:

$$
N_{\mu_{1} \ldots \mu_{n}}=\sum_{i=0,2,4, \ldots}^{n} \pi(0)^{i} \sum_{\substack{\text { all } \\ \in\left\{v_{1}, \ldots, v_{i}\right\}}} g v_{1} v_{2} \cdots g v_{i-1} v_{i} N_{\mu_{1} \ldots \mu_{n} \backslash v_{1} \ldots v_{i}}
$$

The $\pi(0)^{i}$ keeps track of the indices of the tensor coefficients, i.e. it later provides the two zeros for every $g_{\mu \nu}$ in the index, as in D_{0012}.

To fill in the remaining $\pi(i)$'s, we start off by tagging the arguments of the loop function, which are just the momenta. For example:

$$
C\left(p_{1}, p_{2}, \ldots\right) \rightarrow \tau\left(\pi(1) p_{1}+\pi(2) p_{2}\right) C\left(p_{1}, p_{2}, \ldots\right)
$$

The temporary function τ keeps its argument, the 'tagged' momentum p, separate from the rest of the amplitude.

Now add the indices of $N_{\mu_{1} \ldots \mu_{n}}$ to the momentum in τ :

$$
\tau(p) N_{\mu_{i} \ldots \mu_{n}}=p_{\mu_{i}} \cdots p_{\mu_{n}} .
$$

Finally, collect all π 's into the tensor-coefficient index.
totensor q1, NUM;

* take out 0, 2, 4... indices for g_\{mu nu\}
id NUM (?b) = sum_(DUMMY, 0, nargs_(?b), 2, pave(0)^DUMMY * distrib_(1, DUMMY, dd_, NUM, ?b));
* construct tagged momentum in TMP
id C0i([p1]?, [p2]?, ?a) = TMP(pave(1)*[p1] + pave(2)*[p2]) * COi(MOM([p1]), MOM([p2] - [p1]), MOM([p2]), ?a);
* expand momentum
repeat id $\operatorname{TMP}([p 1] ?) * \operatorname{NUM}([\mathrm{mu}] ?, \quad ? a)=$ $\mathrm{d}_{-}([\mathrm{p} 1],[\mathrm{mu}]) * \operatorname{NUM}(? \mathrm{a}) * \operatorname{TMP}([\mathrm{p} 1])$;
* collect the indices
chainin pave;

```
tens[i_, p_] [mu_, nu_--] :=
Block[ {tens},
        (* take out g *)
    { MapIndexed[g[mu, #1] Drop[tens[{i, 0,0}, p][nu], #2]&, {nu}],
        (* take out p *)
    (#1[mu] tens[{i,#2}, p] [nu])&@@@ p }
]
tens[i_, _][] := C@@ Sort[Flatten[i]]
```

FindTensors [mu_, p_] :=
Block[\{tenslist\},
tenslist $=$ tens[\{\}, MapIndexed[List, p]]@@ mu;
Collect[Plus@@ Flatten[tenslist], _C]
]

Often special requirements:

- Resummations (e.g. $h b b$ in MSSM),
- Approximations (e.g. gaugeless limit),
- K-factors,
- Nontrivial renormalization.

Software design so far:

- Mostly 'monolithic' (one package does everything).
- Often controlled by parameter cards, not easy to use beyond intended purpose.
- May want to/must use other packages.

Shopping List for the Diagrammatic Calculation:

(1) Unrenormalized 2 L self-energies
$\Sigma_{h h}^{(2)}, \Sigma_{h H}^{(2)}, \Sigma_{h A}^{(2)}, \Sigma_{H H}^{(2)}, \Sigma_{H A}^{(2)}, \Sigma_{A A}^{(2)}, \Sigma_{H^{+} H^{-}}^{(2)}$ in gaugeless approximation at $p^{2}=0$ at $\mathcal{O}\left(\alpha_{t}^{2}\right)$.
(2) $\mathbb{I L}$ diagrams with insertions of IL counterterms.
(3) 2L counterterms for (1).
(4) 2 L tadpoles $T_{h}^{(2)}, T_{H}^{(2)}, T_{A}^{(2)}$ at $\mathcal{O}\left(\alpha_{t}^{2}\right)$ appearing in (3).

- Break calculation into several steps.
- Implement each step as independent program (invoked from command line).
- In lieu of 'in vivo' debugging keep detailed logs.
- Coordinate everything through a makefile.

Calculation split into 7 (8) steps:

- Shell scripts (/bin/sh), run from command line as e.g.
./1-amps arg1 arg2
- arg1 = h0h0, h0HH, h0AO, HHHH, HHAO, AOAO, HmHp (self-energies), h0, HH, A0 (tadpoles).
- $\arg 2=0$ for virtual 2L diagrams, 1 for IL diagrams with IL counterterms.
- Inputs/outputs defined in first few lines, e.g.

$$
\begin{aligned}
& \text { in=m } / \$ 1 / 2 \text {-prep. } \$ 2 \\
& \text { out=m } / \$ 1 / 3 \text {-calc. } \$ 2
\end{aligned}
$$

- Symbolic output + \log files go to 'm' subdirectory. Log file = Output file + .log.gz
- Fortran code goes to 'f' subdirectory.

Gaugeless approximation:

(1) Set gauge couplings $g, g^{\prime}=0 \Rightarrow M_{W}, M_{Z}=0$.
(2) Keep finite weak mixing angle.
(3) Keep $\frac{\delta M_{N}^{2}}{M_{W}^{2}}$ and $\frac{\delta M_{Z}^{2}}{M_{Z}^{2}}$ finite.

Must set $m_{b}=0$ so that $\mathcal{O}\left(\alpha_{t}^{2}\right)$ corrections form supersymmetric and gauge-invariant subset.

Most efficient to modify Feynman rules (not © , though):

- Load MSSMCT.mod model file.
- Modify couplings, remove zero ones.
- Write out MSSMCTgl.mod model file.
- Generate 2L virtual and 1L+counterterm diagrams using wrappers for FeynArts functions.

Simple diagram selection functions, e.g.

```
sel[0][S[_] -> S[_]] = {
    t[3] && htb[6],
    t[3] && tb[6],
    t[3] && tb[6],
    t[3] && t[4] && htb [5],
    t[3] && htb[5|6],
    t[3] && htb[5],
    t[3] && t[5],
    t[5] && ht[3|4],
    t[3|4|5] && ht[3|4|5] }
\(\mathrm{t}[3]\) \&\& \(\mathrm{t}[4]\) \&\& htb [5],
\(\mathrm{t}[3]\) \&\& htb[5|6],
\(\mathrm{t}[3]\) \&\& htb[5],
\(t[3]\) \&\& \(t[5]\),
\(\mathrm{t}[5]\) \&\& \(\mathrm{ht}[3 \mid 4]\),
\(\mathrm{t}[3|4| 5]\) \&\& ht [3|4|5] \}
```


one of $h_{i}, \tilde{\chi}$,
$t, \tilde{\tau}, b, \tilde{b}$

- Take $p^{2} \rightarrow 0$ limit.
- Simplify ubiquitous sfermion mixing matrices $U_{i j}$, mostly by exploiting unitarity ($\sim \mathbf{5 0 \%}$ size reduction).

Unitarity of 2×2 matrix: $U U^{\dagger}=U^{\dagger} U=\mathbb{1}$, i.e.

$$
\begin{array}{ll}
U_{11} U_{11}^{*}+U_{12} U_{12}^{*}=1, & U_{11} U_{21}^{*}+U_{12} U_{22}^{*}=0, \\
U_{21} U_{21}^{*}+U_{22} U_{22}^{*}=1, & U_{21} U_{11}^{*}+U_{22} U_{12}^{*}=0, \\
U_{11} U_{11}^{*}+U_{21} U_{21}^{*}=1, & U_{11} U_{12}^{*}+U_{21} U_{22}^{*}=0, \\
U_{12} U_{12}^{*}+U_{22} U_{22}^{*}=1, & U_{12} U_{11}^{*}+U_{22} U_{21}^{*}=0 .
\end{array}
$$

Problem: Simplify will rarely arrange the U 's in just the way that these rules can be applied directly.

Solution: Introduce auxiliary symbols which immediately deliver the r.h.s. once Simplify considers the I.h.s., i.e. increase the 'incentive' for Simplify to use the r.h.s.
But: Upvalues work only one level deep.

Introduce

$$
\begin{aligned}
& \operatorname{USf}[1, j] \operatorname{USfC}[1, j] \rightarrow \operatorname{UCSf}[1, j], \\
& \operatorname{USf}[2, j] \operatorname{USfC}[2, j] \rightarrow \operatorname{UCSf}[2, j], \\
& \operatorname{USf}[1, j] \operatorname{USfC}[2, j] \rightarrow \operatorname{UCSf}[3, j], \quad+\operatorname{ditto} \text { for } 1^{\text {st }} \text { index }
\end{aligned}
$$

and formulate unitarity for the UCSf:

$$
\begin{array}{ll}
\operatorname{UCSf}[2,1]=\operatorname{UCSf}[1,2] ; & \operatorname{UCSf}[3,2]=-\operatorname{UCSf}[3,1] ; \\
\operatorname{UCSf}[2,2]=\operatorname{UCSf}[1,1] ; & \operatorname{UCSfC}[3,2]=-\operatorname{UCSfC}[3,1] ; \\
& \operatorname{UCSf}[2,3]=-\operatorname{UCSf}[1,3] ; \\
\ldots & \\
& \operatorname{UCSfC}[2,3]=-\operatorname{UCSfC}[1,3] ;
\end{array}
$$

- Relatively straightforward application of TwoCalc and FormCalc for tensor reduction.
- Observe: Need two Mathematica sessions since TwoCalc and FormCalc cannot be loaded into one session, easily accomodated in shell script.
- Tensor reduction traditionally increases \# of terms most.
- Step 4 reduces size before combination of results.
- Empirical simplification recipe.
- 'DiagMark' trick (D. Stöckinger):
- Introduce DiagMark $\left[m_{i}\right.$] where $m_{i}=$ masses in loop in FeynArts output.
- Few simplifications can be made between parts with different DiagMark \Rightarrow Can apply simplification as Collect[amp, _DiagMark, simpfunc]
- Much faster.
- Compute IL renormalization constants (RC) with FormCalc.
- Substitute explicit mass dependence in

$$
\text { dMVsq1 } \rightarrow \text { MV2 dMVsq1MV2 } \quad(V=W, Z)
$$

such that gaugeless limit can be taken safely.

- Expand in ε, collect powers for easier handling later, e.g.

$$
\begin{aligned}
& \{\operatorname{dMf1[3,3]~->~RC[-1,~dMf1[-1,3,3]]~+~} \\
& \text { expansion } \\
& \begin{array}{l}
\operatorname{RC}[0, \mathrm{dMf} 1[0,3,3]] \text {, } \\
\begin{array}{c}
\{\mathrm{dMf} 1[-1,3,3]->\ldots, \\
\mathrm{dMf} 1[0,3,3]->\ldots\}
\end{array}
\end{array}
\end{aligned}
$$

- Expand amplitude in ε (similar as RC).
- Insert RCs.
- Add genuine 2L counterterms (hand-coded).
- Pick only ε^{0} term (unless debug flag set).
- Perform final simplification.
- Introduce abbreviations to shorten code.
- Write out Fortran code using FormCalc's code-generation functions.
- Add static code which computes e.g. the necessary parameters for the generated code.
- Total final code size: 350 kBytes.

More details in arXiv:1508.00562.

- Mathematica makes it easy, even for fairly unskilled users, to manipulate expressions.
- Mathematica is a general-purpose system, i.e. convenient to use, but not ideal for everything.
- Take advantage of many packages, convert if necessary.
- Scripting helps combine different packages.
- Crunch numbers outside of Mathematica.

