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Introduction

Moore's law

Moore's law is the observation that the number of
transistors in a dense integrated circuit doubles about
every two years (1965)

We also used to apply it to CPU speed.

More or less valid till 2005. And till 2010 counting CPU
cores. What now?
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Introduction

Feynman integral evaluation

QCD massless form factors

Two-loop results G. Kramer and B. Lampe'87 T. Matsuura

and W. L. van Neerven'88 T. Matsuura, S. C. van der Marck,

and W. L. van Neerven'89

Three-loop results P. A. Baikov, K. G. Chetyrkin, A. V.

Smirnov, V. A. Smirnov and M. Steinhauser'09, T. Gehrmann,

E. W. N. Glover, T. Huber, N. Ikizlerli, and C. Studerus'10,

R. N. Lee and V. A. Smirnov'10

Four-loop results J. M. Henn, A. V. Smirnov, V. A. Smirnov

and M. Steinhauser'16 J. Henn, A. V. Smirnov,

V. A. Smirnov, M. Steinhauser and R. N. Lee'17 R. N. Lee,

A. V. Smirnov, V. A. Smirnov and M. Steinhauser'17 A. von

Manteu�el and R. M. Schabinger'17
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Parallelization

The key to moving further is parallelization.

Multicore systems. Shared memory, easier to parallelize

GPU, FPGU and so on. Special approach sutable for
some problems.

Supercomputers
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Introduction

Speci�cs of supercomputers

Smaller nodes (compared to top nodes on our clusters)

MANY nodes!!!!

Time limits for jobs and high chance of failure due to
hardware

No magic button to make your code work at a
supercomputer. There is no shared memory!

One needs a special code structure and special resource
for parallelization.
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Introduction

Feynman integrals

Feynman integrals over loop momenta:

F(a1, . . . , an) =

∫
· · ·

∫
ddk1 . . . d

dkh

E a1
1 . . .E an

n

.

Currently one needs to evaluate millions of Feynman
integrals with di�eent indices ai coresponding to a
particular diagram, so evaluating each of them
analytically turns into an unreal task.
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Evaluation of Feynman integrals

Evaluation of Feynman integrals can be divided into two parts:

reduction � representing all required integrals as linear
combinations of so-called master integrals;

evaluation of master integrals.
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We need a huge parallel resource

1) The number of master integrals to be evaluated

2) The number of sectors in the sector-decomposition
approach.
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Evaluation

α-representation

Feynman parametric representation:

F(a1 . . . , aL; d) =
ia+h(1−d/2)πhd/2∏

l
Γ(al)

×
∫ ∞
0

. . .

∫ ∞
0

∏
l

αal−1
l

U−d/2eiF/U−i
∑

m2
l
αldα1 . . . dαL .

where U è F are polynomials α that can be algorithmically
determined by the initial diagram.
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Sector decomposition

∫ 1

0

∫ 1

0

1

(x + y)2−ε
dydx

= 2

∫ 1

0

∫
x

0

1

(x + y)2−ε
dydx =
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∫ 1

0
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Evaluation

FIESTA

SDEvaluate[{U,F,l},indices,order]

SDEvaluate[UF[loop_momenta,propagators,

subst], indices,order]

Example:
SDEvaluate[UF[{k},{-k2,-(k+p1)

2,-(k+p1+p2)
2,

-(k+p1+p2+p4)
2}, {p21 →0,p22 →0,p24 →0,

p1 p2 →-S/2,p2 p4 →-T/2,p1 p4 →(S+T)/2,

S→3,T→ 1}], {1,1,1,1},0]

Answer : -4.38658 + 1.3333/ep�2 - 0.732466/ep +

0.001 pm9
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Classical usage of FIESTA

Integrands are prepared in Mathematica and saved in a
database;

Integration performed by a c++ program (called from
Mathematica);

Mathematica gathers results from the database.

Use NumberOfSubkernels and NumberOfLinks to turn on
internal parallelization (by Mathematica and by threads for the
c++ part);
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Evaluation

Usage of FIESTA at supercomputers

PrepareDatabase=True; Store the integrands in a
database, upload it to a supercomputer

Run the integrarion separately (this part does not require
Mathematica!) with the use of MPI

Analyze the results with Mathematica

Also use the GPU acceleration if GPU nodes are available at
the cluster.
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Evaluation

Some results obtained on supercomputers evaluating master
integrals with FIESTA.

Corrections to the muon anomalous magnetic moment at
four-loop order A. Kurz, T. Liu, P. Marquard,
A. V. Smirnov, V. A. Smirnov and M. Steinhauser'15

Quark Mass Relations to Four-Loop Order in Perturbative
QCD P. Marquard, A. V. Smirnov, V. A. Smirnov and
M. Steinhauser'15 P. Marquard, A. V. Smirnov,
V. A. Smirnov, M. Steinhauser and D. Wellmann'17
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Reduction

Multiple programs for Feynman integral reduction

AIR

FIRE

Reduze

LiteRed

Kira

di�erent private implementations

more public algorithms going to appear?



Feynman integral evaluation at supercomputers

Reduction

Parallel approach to reduction

Reduction is solving a huge sparse matrix with polynomial
coe�cients
Current diagrams need (A LOT OF RAM) and (A LOT OF
TIME)!

Parallel reduction in sectors of same level

Multiple fermat workers (GCD application)

Prime �eld approach (Manteu�el, Panzer, Schabinger)

Separate evaluation of coe�cients at di�erent masters
(Chawdhry, Lim, Mitov)
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Reduction

Prime �eld approach

Substitute di�erent vaues of d and kinematic invariants,
now we result in large rational numbers

Take di�erent large prime numbers, move from Z to Zp

Run MANY reductions that are much more simple than
the original one

Reconstruct the coe�cients

100 values of d, 100 values of x, 20 prime numbers -> 20000
reductions, each of those takes time and use threads -> �ts
for a super computer.
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Reduction

Rational reconstruction

An integer is unequely reconstructed by enough of its
projections to Zp

When reconstructing a rational number, we look for
smallest possible numerator and denominator

A few extra prime numbers are for checks
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Reduction

Polynomial reconstruction

Newton approach

f (x) = c0 + (x − x0)(c1 + (x − x1)(c2 + . . .) . . .)
coe�cients ci are algorithmically evaluated from the values
f (xi).
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Reduction

Rational reconstruction

Thiele approach

f (x) = c0 + (x − x0)/(c1 + (x − x1)/(c2 + . . .) . . .)
coe�cients ci are algorithmically evaluated from the values
f (xi).
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Reduction

Rational reconstruction (multiple variables)

Combine two approaches (when coe�cients are again
functions)

Newton-Newton (for polynomials)

Newton-Thiele (when polynomial in one variable)

Thiele-Newton (something in between)

Thiele-Thiele (universal but too complex)
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Reduction

Rational reconstruction (multiple variables)

The ideal case is when denominators of coe�cients at
master integrals are split into a product of a function of d
and a function of x .

In this case �rst the x denominators are recovered for a
given d .

Then the results are multiplied by the worst denominator
and Newton-Thiele is used.

Can we have such a basis with proper coe�cients? We
beleive that YES!
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