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Motivation

◮ The gauge-invariant EFT for Multi-Regge processes in QCD,
which includes Reggeized gluons [Lipatov; 1995] and Reggeized

quarks [Lipatov, Vyazovsky; 2001] has been introduced as a
systematic tool to compute and resum the higher-order
corrections in QCD, enhanced by log(s/(−t)), with the arbitrary
NkLL accuracy.

◮ Another motivation is the unitarization program for high-energy
scattering. The BFKL equation at the fixed logarithmic accuracy
predicts power-like growth of the cross-section with s, which
violates Froissart bound (⇐ Unitarity). The basic idea is to
write-down the Hermitian effective Lagrangian for which
Unitarity will hold automatically.
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Motivation

◮ Currently, a number of approaches is developed with the aim of
taking into account both DGLAP and BFKL effects. Many of
them try to generalize the amplitudes from the Lipatov’s EFT to
the Soft and Collinear regions (e.g. PRA [M.N., V.A.S., et. al.] or
HEJ [J. Andersen, et. al.] approaches, KaTie [A. van Hameren,
et. al.] Monte-Carlo code) or incorporate BFKL effects into the
framework of SCET (e.g. [I. Stewart, I. Rothstein, 2016]). Going
beyond tree level is an important part of this activity.

◮ In the talk I would like to describe the one-loop structiure of
Lipatov’s EFT. The complete picture, similar to one in ordinary
QCD, emerges.
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What such EFTs as SCET or Lipatov’s theory are (needed
for)?

Picture is taken from
[hep-ph/1410.1892].

◮ EFT = formalism which explicitly
implements certain factorization
properties of QCD amplitudes:
◮ Factorization in the soft and collinear

limits – Soft-Collinear Effective Theory
(SCET).

◮ Factorization in the Multi-Regge limit –

Lipatov’s theory.

◮ As a result of kinematic approximations,
artificial logarithmic divergences arise
in different factors, but they should cancel
in order-by-order in PT.

◮ Factorization + cancellation of artificial
divergences ⇒ Renormalization group.
The latter allows to resum large
logarithms of scale ratios.

4 / 37



Sudakov (light-cone) decomposition of momenta.
It is convinient to relate the basis vectors of Sudakov decomposition
with (almost) light-like momenta of colliding highly energetic particles
(P 2

1,2 = 0):

nµ
− =

2Pµ
1√
S
, nµ

+ =
2Pµ

2√
S
, S = 2P1P2 ⇒ n+n− = 2.

Then for any four-vector kµ one has:

kµ =
1

2

(
k+n

µ
− + k−n

µ
+

)
+ kµT ,

where k± = k± = n±k, n±kT = 0. For the dot-product one has:

kq =
1

2
(k+q− + k−q+)− kTqT , k2 = k+k− − k2

T .

Rapidity:

y =
1

2
log

(
q+

q−

)

.
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Multi-Regge Kinematics.

At high energies, t-channel exchange diagrams with
Multi-Regge(MRK) or Quasi-Multi Regge(QMRK) Kinematics of the
final-state dominate in the 2→ 2 + n amplitude.

s







P2

P1 P ′
1

q1 ↓
k

q2 ↑

P ′
2







s1







s2

Double Regge limit (MRK):

s1 ≫ −q21 , s2 ≫ −q22 ,

momentum fractions z1 = q+1 /P
+
1 ,

z2 = q−2 /P
−
2 .

Properties of MRK:

◮ y(P ′
1)→ +∞, y(P ′

2)→ −∞, y(k) –
finite,

◮ z1 ∼ z2 ∼ z ≪ 1 , |kT | ≪
√
s ,

◮ q+1 ∼ |qT1| ∼ O(z)≫ q−1 ∼ O(z2),
q−2 ∼ |qT2| ∼ O(z)≫ q+2 ∼ O(z2).
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Reggeization of amplitudes in QCD.

s







P2

P1 P ′
1

t1 ↓
k

t2 ↓

P ′
2

B

A

B′

C

A′PPR

RRP

PPR







s1







s2

In MRK asymptotics, 2→ 3-amplitude
factorizes (up to O(z#1,2)):

AA′B′C
AB = γR1

A′A ·
(
s1
s0

)ω(t1) −i
2t1
×

ΓC
R1R2

(q1, q2) ·
−i
2t2

(
s2
s0

)ω(t2)

· γR2

B′B

ΓC
R1R2

(q1, q2) – RRP production vertex,

γRA′A – PPR-scattering vertex,

ω(t) - Regge trajectory.
Two ways to obtain this asymptotics:

◮ BFKL-approach (Unitarity, renormalizability and gauge
invariance), see. [Ioffe, Fadin, Lipatov, 2010].

◮ Effective action approach [Lipatov, 1995; Lipatov, Vyazovsky,
2001].
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Structure of the EFT.
Light-cone derivatives:

∂± = nµ
±∂µ = 2

∂

∂x∓

EFT Lagrangian [Lipatov, 1995]:

L = Lkin +
∑

i

[

L
(yi≤y≤yi+1)
QCD + L

(yi≤y≤yi+1)
R

]

,

the separate copy of L
(yi≤y≤yi+1)
QCD lives in each interval in rapidity

yi ≤ y ≤ yi+1. Different intervals interact via Reggeon exchanges
(Ra

± = Ra
±Ta):

Lkin = 2∂µR
a
+∂

µRa
−,

kinematic constraints on Reggeon-fields (⇔ QMRK):

∂−R+ = ∂+R− = 0⇒

R+ carries (k+,kT ) and R− carries (k−,kT ).
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(Semi-)Infinite light-like Wilson lines
Particles highly separated in rapidity “perceive” each-other as
light-like Wilson lines.

Wx∓ [A±] = P exp

[

−igs
2

x∓∫

−∞

dx′∓A±(x±, x
′
∓,xT )

]

=
(
1 + igs∂

−1
± A±

)−1
,

W †

x∓ [A±] = P exp

[

igs
2

x∓∫

−∞

dx′∓A±(x±, x
′
∓,xT )

]

= P
(
1− igs∂−1

± A±

)−1
,

Notation for ordered integrals:

1

2n

x∓
∫

−∞

dx∓1 f1(x
∓
1 )

x∓
1∫

−∞

dx∓2 f2(x
∓
2 ) . . .

x∓
n−1∫

−∞

dx∓n fn(x
∓
n ) = ∂−1

± f . . . ∂−1
± f

︸ ︷︷ ︸

n

.

In the Feynman rules:

∂−1
± → −i

k± + iε
.
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Basic structure of Induced interactions.

− + − +

Induced interactions of particles and Reggeons [Lipatov, 1995]:

L
(y1<y<y2)
R (x) ⊃ i

gs
tr
(

R+(x)∂
2
ρ∂−Wx

[

A
(y1<y<y2)
−

]

+ R−(x)∂
2
ρ∂+Wx

[

A
(y1<y<y2)
+

])

.
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Basic structure of Induced interactions.

− + − +

Induced interactions of particles and Reggeons:

L
(y1<y<y2)
R ⊃ i

gs
tr
[

R+∂
2
ρ∂−W

[

A
(y1<y<y2)
−

]

+R−∂
2
ρ∂+W

[

A
(y1<y<y2)
+

]]

,

expansion of P -exponent generaties induced vertices:

LR ⊃ tr
[(
R+∂

2
σA− +R−∂

2
σA+

)
+

(−igs)(∂2σR+)(A−∂
−1
− A−) + (−igs)2(∂2σR+)(A−∂

−1
− A−∂

−1
− A−) +

(−igs)(∂2σR−)(A+∂
−1
+ A+) + (−igs)2(∂2σR−)(A+∂

−1
+ A+∂

−1
+ A+)

+O(g3s)
]
,

but this structure is non-Hermitian: R+ – Hermitian, W – Unitary!
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Hermitian effective action and pole prescription
Recently the new derivation of effective action has been proposed
[Bondarenko, Zubkov, 2018] which fixes the Hermitian form of
Reggeon-gluon interaction:

i

gs
tr
[
R+∂

2
ρ∂−

(
W [A−]−W † [A−]

)]
,

E.g. Rgg-vertex:

−igs
2

(
∂2σR

a
+(x)

)



Ab1
− (x)

x−∫

−∞

dx−1 A
b2
− (x1)



 tr
[
T a
[
T b1 , T b2

]]
,

⇒ Feynman rule:

gs(−q2)fab1b2(nµ1

− nµ2

− )
1

2

[
1

k−1 + iε
+

1

k−1 − iε

]

= gs(−q2)(nµ1

− nµ2

− )
fab1b2

[k−1 ]
,

i.e. the PV-prescription for the 1/k± poles for simplest induced
vertices [Hentschinski, 2013].
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Higher-order induced vertices

For higher-order induced vertices the i(∂2R±)∂∓
(
W [A∓]−W †[A∓]

)

interaction leads to the iε prescription proposed independently in
[Hentschinski, 2013] (based on argments from Regge theory):

◮ The induced vertex is written according to i(∂2R±)∂∓W [A∓]
interaction with 1/(k± + iε) prescription for all poles,

◮ The color structure tr
(
T aT b1 . . . T bn

)
is projected on subspace,

spanned by:

tr
(
T a
[[[
T bi1 , T bi2

]
, T bi3

]
, . . . T bin

])
.

This pole prescription is very well tested: leads to the correct results
for 1-loop amplitudes with Reggeized gluons and quarks and corrct
2-loop gluon Regge trajectory [Chachamis, Hentschinski, Sabio-Vera,
2012-2013; M.N., V.A.S., 2017].

The formalism is well-defined at all orders now!
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EFT for QMRK-processes with quark exchange.

− + − +

EFT for Reggeized quarks [Lipatov, Vyazovsky, 2001]:

LQ = Q̄−i∂̂
(
Q+ −W † [A+]ψ

)
+ Q̄+i∂̂

(
Q− −W † [A−]ψ

)
+ h.c.,

where p̂ = pµγ
µ, QMRK kinematic constraints:

∂±Q∓ = ∂±Q̄∓ = 0,

n̂±Q∓ = 0, Q̄∓n̂
± = 0.⇒

Reggeized quark propagator (P̂± = n̂∓n̂±/4):

✝ ✞ = P̂±

iq̂

q2
, ✝ ✞ =

iq̂

q2
P̂±.
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Rapidity divergences and regularization.
Due to the presence of the 1/q±-factors in the induced vertices, loop
integrals in EFT contain the light-cone (Rapidity) divergences:

Σ
(1)
ab =

p ↓
q ↓ = g2sCAδab

∫
ddq

(2π)D

(
p2
T (n+n−)

)2

q2(p− q)2q+q−

The regularization by explicit cutoff in rapidity was proposed by
Lipatov [Lipatov, 1995] (q± =

√

q2 + q2
T e

±y):

∫
dq+dq−

q+q−
=

∫ y2

y1

dy

∫
dq2

q2 + q2
T

,

then

Σ
(1)
ab ∼ δabp2

T × CAg
2
s

∫
p2
T d

D−2qT

q2
T (pT − qT )2

︸ ︷︷ ︸

ω(1)(p2
T )

×(y2 − y1) + finite terms
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Gluon Reggeization in the EFT (cutoff regularization)

0 < y1 < y2 y1 < y2 < y3 yN−1 < yN < Y

0 Y

=

Y∫

0

dy1 ω
(1)(p2

T )·
Y∫

y1

dy2 ω
(1)(p2

T )·. . .
Y∫

yN−1

dyN ω(1)(p2
T ) =

(
Y ω(1)(p2

T )
)N

N !

Sum of such diagrams will give the factor

exp
[

Y ω(1)(p2
T )
]

.

“Reggeization” of the particle in t-channel.
In the EFT, this exponentiation can be proven at all orders.
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Covariant regularization.

The regularization and pole prescription was introduced in a series
of papers [Hentschinski, Sabio Vera, Chachamis et. al., 2012-2013],
also known in TMD factorization as “tilted Wilson lines” [Collins,
2011].
Regularization of the light-cone divergences is achieved by shifting n±

vectors from the light-cone:

ñ± = n± + r · n∓, k̃± = k± + r · k∓, r → 0,

and for the lowest-order(Rgg, Qqg) induced vertices the PV
prescription is at work:

I [±] :
1

[k̃±]
=

1

2

(
1

k̃± + iε
+

1

k̃± − iε

)

,
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Regularization and gauge-invariance
Regularization should preserve the gauge-invariance of Reggeon-gluon
interactions:

S
(−)
Rg =

∫

d2xT

+∞∫

−∞

dx+dx−
2

tr
[

R−∂̃+∂
2
σWx̃− [Ã+]

]

=

∫

d2xT

+∞∫

−∞

dx̃+dx̃−
1− r2 tr

[

R− ∂

∂x̃−
∂2σWx̃− [Ã+]

]

=

=

∫

d2xT

+∞∫

−∞

dx̃+dx̃−
1− r2

{
∂

∂x̃−
tr
[

R−∂2σWx̃− [Ã+]
]

− 1

2
tr
[(

∂̃+R−

)

∂2σWx̃− [Ã+]
]}

.

First term – infinite Wilson line is gauge invariant (w.r.t. gauge
transformations trivial at ∞) ⇒ new kinematic constraint:

∂̃+R− = ∂̃−R+ = 0,

or p̃+ = 0 for R− and p̃− = 0 for R+.

18 / 37



Rapidity divergences in real corrections
New constraint allows to use same regularization for RDs in virtual

and real corrections. Without it, e.g., the RDs in Lipatov’s vertex
(k = q1 + q2, k

2 = 0):

Γ+µ− = 2

[

(q2 − q1)µ +

(
q21

k̃−
+ q̃+1

)

ñ−
µ −

(
q22

k̃+
+ q̃−2

)

ñ+
µ

]

,

are not regularized at all and the Slavnov-Taylor identity

kµΓ+µ− = 0 is broken by terms O(r).

-

1

2
logK1

r

O 1

2
logK1

r

O

-4 -2 2 4

0.2

0.4

0.6

0.8

1.0

The square of regularized LV:

Γ+µ−Γ+ν−P
µν =

16q2
T1q

2
T2

k2
T

f(y),

←−f(y) = 1

(re−y + ey)2(rey + e−y)2
,

+∞∫

−∞

dy f(y) = −1− log r +O(r)
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RDs in 1-loop, 1-Reggeon amplitude

q + p1

q + p2

q + pn

p̃+n = 0

q

kn

k2

k1

+

pi =

i∑

j=1

kj , p0 = 0, d = 4− 2ǫ.

“Mixed” Feynman parametrization:

I =

∫
ddq

q2(q + p1)2 . . . (q + pn)2(ñ+q)

∼
1∫

0

da1 . . . dan+1

∞∫

0

dx1 δ



1−
n+1∑

j=1

aj





×
∫

ddq

[

x1(ñ
+q) +

n+1∑

i=1

ai(q + pi−1)
2

]n+2
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RDs in 1-loop, 1-Reggeon amplitude

q + p1

q + p2

q + pn

p̃+n = 0

q

kn

k2

k1

+

I ∼
1∫

0

da1 . . . dan+1

∞∫

0

dx1 δ

(

1−
n+1∑

j=1

aj

)

×
[

D + x1
n−1∑

j=1

p̃+j aj+1+rx
2
1

]−n−ǫ

,

where D = − 1
2

n∑

i,j=0

ai+1aj+1(pi − pj)2.

Let’s put r = 0 ⇒ after integration over x1:

I ∼
1∫

0

da1 . . . dan+1 δ (...)





n−1∑

j=1

p+j aj+1





−1

D−n−ǫ+1,

◮ Log-divergent for n = 2 as
∫

0

da2

a2
, for n > 2 – finite.

◮ For n = 2, divergence can be removed by differentiating ∂I/∂k21
or ∂I/∂k22.
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RDs in 1-loop, 2-Reggeon amplitude

q + p1

p̃−1 = 0

q + p2

q + pn

q

p̃+n = 0

kn

k2

−

k1

+

“Mixed” Feynman parametrization:

I =

∫
ddq

q2(q + p1)2 . . . (q + pn)2(ñ+q)(ñ−q)

∼
1∫

0

da1 . . . dan+1

∞∫

0

dx1dx2 δ



1−
n+1∑

j=1

aj





×
∫

ddq

[

x1(ñ
+q) + x2(ñ

−q) +

n+1∑

i=1

ai(q + pi−1)
2

]n+3
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RDs in 1-loop, 2-Reggeon amplitude

q + p1

p̃−1 = 0

q + p2

q + pn

q

p̃+n = 0

kn

k2

−
k1

+

I ∼
1∫

0

da1 . . . dan+1

∞∫

0

dx1dx2 δ

(

1−
n+1∑

j=1

aj

)

×
[

D +
n∑

j=1

aj+1

(
x1p̃

+
j + x2p̃

−
j

)
+x1x2+r(x

2
1 + x22)

]−n−1−ǫ

For r = 0, after integration over x2:

I ∼
1∫

0

da1 . . . dan+1

∞∫

0

dx1 δ(. . .)



x1 +

n∑

j=2

aj+1p
−
j





−1 

D + x1

n−1∑

j=1

aj+1p
+
j





−n−ǫ

◮ Log-divergence for n = 1 (p−1 = p+1 = 0) as
∫

0

dx1

x1
.

◮ For n > 1 – no divergence if p−2 6= 0, . . . , p−n 6= 0 and
p+1 6= 0, . . . , p+n−1 6= 0.
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“Tadpoles” and “Bubbles”.

“Tadpoles” (one quadratic propagator):

A
[+]
0 (p) =

∫
[ddq]

(p− q)2[q̃+] , A
[+−]
0 (p) =

∫
[ddq]

(p− q)2[q̃+][q̃−]

where [dDq] = (µ2)ǫddq
iπD/2rΓ

, rΓ = Γ2(1− ǫ)Γ(1 + ǫ)/Γ(1− 2ǫ).

“Bubbles” (two quadratic
propagators):

p

p− q
q

+

p

p− q q

+

−

B
[+]
0 (p) =

∫
[ddq]

q2(p− q)2[q̃+] ,

B
[+−]
0 (pT ) =

∫
[ddq]

q2(p− q)2[q̃+][q̃−],
where p+ = p− = 0 for the last integral.
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“Triangle” integrals

One light-cone propagator:

k →

pT ↑

(k + p)2 = 0

q → +

Two light-cone propagators:

↓ p̃+1 ;pT1

↑ p̃−2 ;pT2

q ↓
k2 = 0

−

+

C
[+]
0 =

∫
[dDq]

q2(p− q)2(p+ k − q)2[q̃+] .

C
[+−]
0 =

∫
[dDq]

q2(p1 − q)2(p2 + q)2[q̃+][q̃−]
.
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Rapidity divergences at one loop
Only log-divergence ∼ log r (Blue cells in the table) is related with
Reggeization of particles in t-channel.
Integrals which do not have log-divergence may still contain the
power-dependence on r:

◮ r−ǫ → 0 for r → 0 and ǫ < 0.

◮ r+ǫ →∞ for r → 0 and ǫ < 0 – weak-power divergence (Pink
cells in the table)

◮ r−1+ǫ →∞ – power divergence. (Red)

(# LC prop.) \ (# quadr. prop.) 1 2 3 4

1 A
[+]
0 B

[+]
0 C

[+]
0 ...

2 A
[+−]
0 B

[+−]
0 C

[+−]
0 ...

3 ... ... ... ...

The weak-power and power-divergences cancel between Feynman
diagrams describing one region in rapidity, so only log-divergences are
left.
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Results for scalar integrals.

Notation:
{

µ
k

}2ǫ
= 1

2

[(
µ

k−iε

)2ǫ

+
(

µ
−k−iε

)2ǫ
]

.

◮ [+]-bubble in general kinematics (leading term of the
Mellin-Barnes representation):

+
B

[+]
0 (p) =

1

p̃+
rǫ

cos(πǫ)

1

2ǫ2

{
µ

p̃+

}2ǫ

+O(r1/2),

◮ Tadpoles (direct integration):

A
[+]
0 (p) =

ǫp̃2+r
−1

(1− 2ǫ)
B

[+]
0 (p),

A
[+−]
0 (p) = p̃+B

[+]
0 (p) + p̃−B

[−]
0 (p)

−
{
µ

p̃+

}ǫ{
µ

p̃−

}ǫ
1

ǫ2
sin(πǫ)Γ(1 − 2ǫ)Γ2(1 + ǫ)

πǫ
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◮ [+−]-bubble in transverse kinematics p− = p+ = 0 (direct
integration):

+

−
B

[+−]
0 (pT ) =

1

p2
T

(
µ2

p2
T

)ǫ
iπ + 2 log r

ǫ
,

◮ [+−]-bubble in p− = 0 kinematics (leading term of MB
expansion):

B
[+−]
0 (pT , p

+) =
1

p2
T

(
µ2

p2
T

)ǫ
Γ2(1 + ǫ)Γ(2 + ǫ) sin(πǫ)

πǫ2

×
[

iπ + log r − log
p2+
p2
T

− ψ(1 + ǫ) + ψ(1)

]

+O(r1/2)

◮ [+−]-bubble in light-like kinematics p2 = 0:

B
[+−]
0 (p2

T , p
2 = 0) =

∫
[ddq]

q2(q − p)2[q+][q− − p−] =
−2Γ(1− ǫ)Γ(1 + ǫ)

p2
T ǫ

2

(
µ2

p2
T

)ǫ

.
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Single-scale triangle.
Calculation of the single-scale triangle integral:

C
(+)
0 (p2

T , k
+) =

∫
[dDq]

q2(p− q)2(p+ k − q)2(−q̃+ + iε)
,

is significantly simplified by the new kinematic constraint p̃+ = 0.
Solution to the constraints:

p− =
p2
T

k+
+

p4
T r

k3+
+O(r2), p+ = −rp−.

After Feynman parametrization:

1

an1
1 an2

2

=
Γ(n1 + n2)

Γ(n1)Γ(n2)

∞∫

0

xn1−1
1 dx

(xa1 + a2)n1+n2
,

we get:

C
(+)
0 ∼

∞∫

0

dx1dx2dx3(1+x1+x2)
2ǫ
[(
p2
T +O(r)

)
x1 ⊕ x3 (k+x2 + rx3)

]−2−ǫ
.
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Mellin-Barnes representation for binomial:

1

(X ⊕ Y )λ
=

1

Γ(λ)

1

2πi

c+i∞∫

c−i∞

dz Γ(−z)Γ(z + λ) Y zX−z−λ.

Applying it to the square bracket and taking integrals over x1,2,3 we
get:

C
(+)
0 ∼

∫

dz rz+ǫ+1

(
p2
T

k2+

)z

Γ(−z)Γ2(1 + z)Γ(−2z − 2ǫ− 2)

× Γ(−z − ǫ− 1)Γ(2z + 2ǫ+ 3)

- 4 - 2 2 4

-1

1

2

3

4

5

6

Taking residue in the “right” pole closest
to z = −1 we obtain:

C
(+)
0 = (−1)

k+p
2
T

(
µ2

p
2
T

)ǫ
1
ǫ

[

−log r + log (k+)2

p
2
T

+ψ(1 + ǫ) + ψ(1)− 2ψ(−ǫ)] +O(r1/2)
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For the case of single light-cone propagator, the result with
PV-prescription:

1

[q̃+]
=

1

2

(
1

q̃+ + iε
+

1

q̃+ − iε

)

is obtained by analytic continuation in k+:

I [+](k) =
1

2

[

I(+)(−k+ − iε)− I(+)(k+ − iε)
]

.

The final result:

C
[+]
0 =

1

k+p2
T

(
µ2

p2
T

)ǫ
1

ǫ

[

−log r − iπ + log
(k+)2

p2
T

+ ψ(1 + ǫ) + ψ(1)− 2ψ(−ǫ)
]

,

coincides with the result of [G. Chachamis, et. al., 2012].
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Triangle with two scales.

Q2; k+; k− →

pT ; p
− ↑

(k + p)2 = 0

q → +

where now k2 = k+k− = −Q2, X = Q2/p2
T .

Apply “Rudimentary DE-method”. The integral:

∂C
(+)
0

∂X

∣
∣
∣
∣
∣
r=0

= −p2
Tµ

2ǫΓ(3 + ǫ)

rΓ

∞∫

0

dx1dx2dx3 x1(1 + x1 + x2)
2ǫ

×
[
p2
Tx1(x2 +X) + k+x3

]−3−ǫ
,

is finite and can be calculated analitically. The answer is:

∂I

∂X

∣
∣
∣
∣
r=0

=
2X−1−ǫ

ǫ
− 2

ǫ

1−X−ǫ

1−X ,

where I(X) = p2
Tk+

(
µ2

p
2
T

)−ǫ [

C
[+]
0 (X)− C [+]

0 (X = 0)
]

r=0
.
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Triangle with two scales.

Q2; k+; k− →

pT ; p
− ↑

(k + p)2 = 0

q → +

The final answer:

C
[+]
0 (X) = C

[+]
0 (X = 0) +

(
µ2

p2
T

)ǫ
I(X)

k+p2
T

,

where

I(X) = −2X−ǫ

ǫ2
− 2

ǫ

X∫

0

(1− x−ǫ)dx

1− x

= −2X−ǫ

ǫ2
+ 2 [Li2(X) + log(1−X) logX ] +O(ǫ).
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Numerical cross-check

The results for C
(+)
0 integrals with 1 and 2 scales has been

cross-checked numerically, using sector decomposition algorithm.

The r-dependence of the ratio, including
∆I(X, r, ǫ = −0.01):

X=10

X=1

X=0.1

10-7 10-6 10-5 10-4 0.001 0.01
r

0.0010

0.0100

0.0050

0.0020

0.0030

0.0015

0.0070

Ratio-1

Remaining r-dependence is O(r∼0.1).

◮ For C
(+)
0 with 2 scales: 3D

integral (cuhre algorithm of
CUBA was used), 8 sectors, up
to 4 subsectors in some of
them.

◮ For numerical comparison, the
1/ǫ2 pole is subtracted.

◮ The leading r-dependent term
can be identified from
numerical data:

∆I(X, r, ǫ) =
r−ǫ

2ǫ2
X−2ǫ

cos(πǫ)
.
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Triangle with two light-cone propagators
Usual one-loop Feynman integrals with more than 4 propagators are
reducible to more simple integrals up to terms O(ǫ). We apply
method of [Bern, Dixon, Kosower, 1992].

↓ pT1; p̃
+
1

↑ pT2; p̃
−
2

q ↓
k2 = 0

−

+

Id[1] ∼
1∫

0

da1da2da3

∞∫

0

dx1dx2 δ(...) · 1 ·Dd/2−5

D = a1a2p
2
T1 + a1a3p

2
T2 + p+1 a2x1 + (−p−2 )a3x2

+(x1 + rx2)(x2 + rx1),
After the shift q → q + q⋆, propagators can be expressed through D:

q2
∣
∣
q→q+q⋆

= q2 +D − a2p2
T1 − a3p2

T2

(q − p1)2
∣
∣
q→q+q⋆

= q2 +D − a1p2
T1 − k+x1

(q + p2)
2
∣
∣
q→q+q⋆

= q2 +D − a1p2
T2 + k−x2 +O(r)

q̃+|q→q+q⋆
= a2k+ + x2 +O(r)

q̃−|q→q+q⋆
= −a3k− + x1 +O(r)







⇒
Linear
system for
a1, a2, a3, x1, x2

Integral with q2 +D reduces to (d− 4)Id+2[1] = O(ǫ). I6[1] – finite!
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Triangle with two light-cone propagators

From the above linear system one can express Id[a1], I
d[a2], I

d[a3]
through integrals with one cancelled propagator and
(d− 4)Id+2[1] = O(ǫ), which we put to zero.
Taking into account that: Id[1] = Id[a1] + Id[a2] + Id[a3], one obtains:

C
[+−]
0 (p2

T1,p
2
T2, p

+
1 ,−p−2 ) =

1

2p2
T1p

2
T2k

2
T

×
{

p2
T1(p

2
T2 − k2

T − p2
T1)
[

B
[+−]
0 (p2

T1, p
+
1 ) + (−p−2 )C

[−]
0 (p2

T1,p
2
T2,−p−2 )

]

+p2
T2(p

2
T1 − k2

T − p2
T2)
[

B
[+−]
0 (p2

T2, p
−
2 ) + p+1 C

[+]
0 (p2

T2,p
2
T1, p

+
1 )
]

+k2
T (k

2
T + p2

T1 + p2
T2)B

[+−]
0 (k2

T , k
2 = 0)

}

,

where k2
T = p+1 (−p−2 ).

(Euclidean region: p+1 > 0, −p−2 > 0, p2
T1,2 > 0).

The log r-divergence cancels within square brackets, as
expected.
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Conclusions

◮ The consistent procedure of rapidity regularization is proposed.
One shoud modify not only Wilson lines, but also kinematic
constraints.

◮ One-loop integrals with log-RDs are identified. The power-RDs
seem to be contained just in a few simplest integrals.

◮ Triangle integrals with 1 and 2 scales are calculated.

◮ Reduction of one-loop integrals with more than four propagators
(quadratic or light-cone) seems to work similar to the case of
ordinary loop integrals.

◮ Possible applications: DIS@NLO in PRA, re-derivation of NLO
BFKL kernel, calculation of NLO corrections to BFKL equation
with quark in t-channel (Fadin-Sherman equation), calculation of
NLO impact-factors for different processes.

Thank you for your attention!
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