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Feynman Diagrams: Basic Definitions

Quantum field theory amplitudes are represented as a sum of Feynman
Diagrams, graphs for which each line and vertex is represented by a
factor in a term of the quantum amplitude.
Integrating over all unconstrained momenta gives rise to a Feynman
Integral. For L loops and n internal lines, and allowing the propagators
to be raised to powers νj ,

FG =

∫ L∏
r=1

dd kr

n∏
j=1

1
(q2

j −m2
j )νj

.

F (s, t , a1, a2, a3, a4; d) =

∫
dd k

(k2)a1 ((k + p3)2)a2 ((k + p3 + p4)2)a3 ((k − p1)2)a4
.
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IBP Relations and Master Integrals

Integration by parts leads to a set of recurrence relations among
diagrams of a given topology but different powers of the propagators.

The full set of recurrence relations should be solved by finding how the
integral with powers of propagators (j1 + j2 + · · ·+ jk ) reduced to
integrals with powers (j1 + j2 + · · ·+ jk − 1)

The method involves taking derivatives of each integral with respect to
momenta and reducing it to the original integral.

The relations found permit a reduction to a basis set of master
integrals in terms of which the diagrams of this class may be expressed.

The IBP identity ∫
dd k

∂

∂kµ

[
kµ

(k2 −m2)n

]
= 0

leads to a recurrance relation

(d − 2n)In − 2nm2In+1 = 0
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Master Integral (MI) Calculation

Next step is to express the MI in terms of well-known functions or
estimate them numerically

MI(pi ,mi ) =
1
εn f1(pi ,mi ) +

1
εn−1 f2(pi ,mi ) + ...

hypergeometric function (Gauss, Appell, Lauricella, etc.)
Harmonic numbers, polylogaritms, generalized polylogarithms, harmonic
polylogarithms....
elliptic generalization of multiple polylogarithms

Book "Evaluating Feynman Integrals", Smirnov, Vladimir A.
some methods of MI evaluation:

differential equation
dimensional recurrence
asymptotic expansion in momenta and masses
evaluation by the Mellin-Barnes representation
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Hypergeometric function definition

Gauss hypergeometric function

2F1

(
a, b
c z

)
=
∞∑

n=0

(a)n(b)n

(c)n

xn

n!

Pochhammer symbol:

(a)n =
Γ(a + n)

Γ(a)
, nΓ(n) = Γ(n + 1)

differential equation (Fuchsian equation):

z(z − 1)
d2u
dz2

+ (c − (a + b + 1)z)
du
dz

− abu = 0

ratio of series expansion coefficients:

2F1

(
a, b
c z

)
=
∞∑

n=0

Cnxn

cn+1

cn
=

(a + n)(b + n)
(c + n)(n + 1)

how to obtain new hypergeometric function:
∞∑

n=0

(a)n(b)n(b2)m+n

(c)n(e)2m−k+l

xn

n!

ym

m!

z l

l!
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generalized Lauricella series

Appell hypergeometric function:

Fc(a, b; c1, c2; z1, z2) =
∑
k1,k2

(a)k1+k2 (b)k1+k2

(c1)k1 (c2)k2

zk1
1 zk2

2

k1!k2!

To express the Feynman integral we need hypergeometric function
called generalized Lauricella series:

∞∑
m1,...,ml

∏
i,j

(aj )∑l
k qk mk

(bi )∑l
k qk mk

l∏
n=1

xmn
n

mn!
, qk ∈ Z ,

F A:B(1);...;B(n)

C:D(1);...;D(n)

(
[(a) : θ(1), . . . , θ(n)] : [(b1) : φ(1)]; . . . ; [(bn) : φ(n)]

[(c) : ψ(1), . . . , ψ(n)] : [(d1) : δ(1)]; . . . ; [(dn) : δ(n)]
x1, . . . , xn

)
=

∞∑
s1,...,sn=0

Ω(s1, . . . , sn)
xs1

1

s1!

xsn
n

sn!
,

Ω(s1, . . . , sn) =

∏A
j=1(aj )s1θ

(1)
j +···+snθ

(n)
j

∏B(1)

j=1 (b(1)
j )

s1φ
(1)
j
· · ·
∏B(n)

j=1 (b(n)
j )

snφ
(n)
j∏C

j=1(cj )s1ψ
(1)
j +···+snψ

(n)
j

∏D(1)

j=1 (d (1)
j )

s1δ
(1)
j
· · ·
∏D(n)

j=1 (d (n)
j )

snδ
(n)
j

,
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The Mellin-Barnes Representation

The Mellin-Barnes representation relies on the identity

1
(A + B)λ

=
1

Γ(λ)

1
2πi

∫ γ+∞

γ−i∞
dz Γ(−z) Γ(λ+ z)

Bz

Aλ+z .

The contour is chosen to separate the poles in Γ(−z) from the poles in
Γ(λ+ z).
This relation is applied to the denominator in the Feynman Parametrization to
break it up into monomials in the Feynman parameters xi . The integration
over the Feynman parameters can then be easily performed in terms of Γ
functions,
Upon application of Cauchy’s theorem, the Feynman integral can be
converted into a linear combination of multiple series:

Φ(n, ~x ) ∼
∞∑

k1,··· ,kr+m=0

∏
a,b

Γ(
∑m

i=1 Aaiki + Ba)

Γ(
∑r

j=1 Cbjkj + Db)
xk1

1 · · · x
kr+m
r+m ,

where xi are some rational functions of Mandelstam variables and
Aai ,Ba,Cbj ,Db are linear functions of the space-time dimension and the
propagator powers.
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Example: Sunset Diagram

FG =

∫
dd k1dd k2

[(k1 − p)2 −m2
1][k2

2 −m2
2][(k1 − k2)2 −m3

3]

=

∫ i∞

−i∞
ds1ds2ds3

m2s1
1 m2s2

2 m2s3
3

(−p2)s1+s2+s3
Γ(−s1)Γ(−s2)Γ(−s3)

Γ(3−d +s1 +s2 +s3)
Γ(d/2−1−s1)Γ(d/2−1−s2)Γ(d/2−1−s3)

Γ(3d/2− 3− s1 − s2 − s3)

∼ zd/2−1
1 zd/2−1

2 F (3)
c (1, d/2, d/2, d/2, d/2; z1, z2, z3)

−zd/2−1
1 Γ2(1−d/2)F (3)

c (1, 2−d/2, d/2, 2−d/2, d/2, z1, z2, z3)

−zd/2−1
2 Γ2(1−d/2)F (3)

c (1, 2−d/2, d/2, 2−d/2, d/2, z1, z2, z3)

−Γ(
d
2
− 1)Γ(1− d

2
)Γ(3− d)F (3)

c (3−d , 2−d/2, 2−d/2, 2−d/2, d/2, z1, z2, z3) ,

in terms of the hypergeometric function (in the case n = 3)

F (n)
c (a, b; c1, · · · , cn; z1, · · · zn) =

∑
k1,...kn

(a)k1+···+kn (b)k1+···+kn

(c1)k1 · · · (cn)kn

zk1
1 · · · z

kn
n

k1! · · · kn!

with arguments z1 = m2
1/m

2
3, z2 = m2

2/m
2
3, z3 = p2/m2

3.
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Differential Reduction

Consider the hypergeometric series

H(~γ;~σ;~x) =
∞∑

m1,m2,··· ,mr=0

( ∏K
j=1 Γ

(∑r
a=1 µjama + γj

)∏L
k=1 Γ

(∑r
b=1 νkbmb + σk

)) xm1
1 · · · x

mr
r .

The lists ~γ = (γ1, · · · , γK ) and ~σ = (σ1, · · · , σL) are called upper and lower
parameters of the hypergeometric function, respectively.
Two functions with lists of parameters shifted by a unit, Φ(~γ + ~ec ;~σ;~x) and
Φ(~γ;~σ;~x), are related by a linear differential operator:

H(~γ + ~ec ;~σ;~x) =

(
r∑

a=1

µcaxa
∂

∂xa
+ γc

)
H(~γ;~σ;~x)

H(~γ;~σ − ~ec ;~x) =

(
r∑

b=1

νcbxb
∂

∂xb
+ σc − 1

)
H(~γ;~σ;~x) .
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Example: Direct index-shifting operators

The generalized hypergeometric functions have the form

pFq(~a;~b; z) ≡ pFq

(
~a
~b

z
)

=
∞∑

k=0

zk

k !

∏p
i=1(ai )k∏q
j=1(bj )k

,

where (a)k = Γ(a + k)/Γ(a) is called a Pochhammer symbol. The lists
~a = (a1, · · · , ap) and ~b = (b1, · · · , bq) are the upper and lower parameters of
hypergeometric functions, respectively.
Direct index-shifting operators may be defined as follows:

pFq(a1 + 1,~a;~b; z) = B+
a1 pFq(a1,~a;~b; z) ≡ 1

a1
(θ+a1) pFq(a1,~a;~b; z) ,

pFq(~a; b1 − 1, ~b; z) = H−b1 pFq(~a; b1, ~b; z) ≡ 1
b1−1

(θ+b1−1) pFq(~a; b1, ~b; z) ,

where
θ = z

d
dz

.
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Example: Inverse operators

For the special case p+1Fp, inverse shifting operators satisfying

p+1Fp(ai − 1,~a;~b; z) = B−ai p+1Fp(ai ,~a;~b; z) ,

p+1Fp(~a; bi + 1, ~b; z) = H+
bi p+1Fp(~a; b1, ~b; z) ,

are found to be given by

B−ai = −ai

ci

ti (θ)− z
∏
j 6=i

(θ + aj )


−

, H+
ai =

bi − 1
di

 d
dz

∏
j 6=i

(θ + bj − 1)− si (θ)


+

with
ci = −ai

p∏
j=1

(bj − 1− ai ) , ti (x) =
x
∏p

j=1(x + bj − 1)− ci

x + ai

di =

p+1∏
j=1

(1 + aj − bi ) , si (x) =

∏p+1
j=1 (x + aj )− di

x + bi − 1
,

and the ± subscripts on the brackets are shorthand indicating that
ai → ai − 1, bi → bi + 1, inside the respective brackets.
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Horn-type Hypergeometric Functions: Takayama

The inverse differential operators can be constructed:

H(~γ − ~ec ;~σ;~x) =
∑

a

Sa(~x , ~∂x )H(~γ;~σ;~x)

H(~γ;~σ + ~ec ;~x) =
∑

b

Lb(~x , ~∂x )H(~γ;~σ;~x) .

In this way, the Horn-type structure provides an opportunity to reduce
hypergeometric functions to a set of basis functions with parameters differing
from the original values by integer shifts:

P0(~x)H(~γ + ~k ;~σ +~l;~x) =
∑

m1,··· ,mp=0

Pm1,··· ,mr (~x)

(
∂

∂~x

)~m
H(~γ;~σ;~x) ,

where P0(~x) and Pm1,··· ,mp (~x) are polynomials with respect to ~γ, ~σ and ~x and
~k ,~l are lists of integers.
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special value parameters

Let us write explicit expressions for the inverse operators for several
hypergeometric functions. For the Gauss hypergeometric function 2F1, we
have:

2F1

(
a1 − 1, a2

b1
z
)

=
1

b1 − a1
[(1− z)θ + b1 − a1 − a2z] 2F1

(
a1, a2

b1
z
)
,

2F1

(
a1, a2

b1 + 1 z
)

=
b1((1− z) d

dz + b1 − a1 − a2)

(b1 − a1)(b1 − a2)
2F1

(
a1, a2

b1
z
)
.

From direct and inverse differential operators we could find additional
equations over hypergeometric function for special values of the parameters.
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criterion of reducibility

pFq

(
b1 + m1, · · · , bn + mn, an+1, · · · , ap

b1, · · · , bn, bn+1, · · · , bq
z
)

=

m1∑
j1=0

· · ·
mn∑

jn=0

A(j1, · · · jn)zJn
p−nFq−n

(
an+1 + Jn, · · · ap + Jn

bn+1 + Jn, · · · , bq + Jn
z
)
,

The hypergeometric function pFq(~a;~b; z) which has pairs of parameters
satisfying ai = bi + mi with mi being positive integers is expressible in
terms of functions of lower order.

The hypergeometric function pFq(~a;~b; z) which has two or more pairs of
parameters satisfying bi = ai + mi + 1 with mi being positive integers is
expressible in terms of functions of lower order

If one of the upper parameters of a hypergeometric function is an
integer, the result of the differential reduction of this hypergeometric
function has one less derivative
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Invariants of Hypergeometric Representation

This analysis demonstrates that there is a very simple relation between
the number h of nontrivial master integrals found from IBP (which are not
expressible in terms of Gamma functions) and the maximal power v of θ
generated by the differential reduction, namely h = v + 1 . This relation
does not depend on the number k of hypergeometric functions entering
original equation.
it was considered all Horn-type hypergeometric function of two variables,
namely 34, including specially considered case of four Appell functions
F1,F2,F3,F4 of two variables.
Laurichella functions FC ,FS of three variables and FD of multiple variable
cases
direct an inverse differential operator was found, conditions of complete
integrability and complete system of independent differential equations
and number of independent solutions in different cases of parameter
values.
The package called HYPERDIRE (HYPERgeometric DIFFerential
REduction), based on language of program Mathematica
Key feature is that the product of non-commutative step-up and
step-down operators of differential reduction turn into product of special
2-dimensional matrices and vectors which greatly simplify and reduce
the time of calculation
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Example, sunset type diagram

Jq
22(m2, p2, α1, α2, σ1, · · · , σq−1) =

[
i1−nπn/2

]q (−m2)
n
2 q−α1,2−σ

Γ(α1)Γ(α2)

{
Πq−1

k=1

Γ( n
2 − σk )

Γ(σk )

}
×

Γ
(
α1 +σ− n

2 (q − 1)
)

Γ
(
α2 +σ− n

2 (q − 1)
)

Γ
(
σ− n

2 (q − 2)
)

Γ
(
α1,2 +σ− n

2 q
)

Γ (α1,2 +2σ−n(q − 1)) Γ
( n

2

)
4F3

(
α1 +σ− n

2 (q − 1), α2 +σ− n
2 (q − 1), σ− n

2 (q−2), α1,2 +σ− n
2 q

n
2 ,

1
2 (α1,2−n(q − 1))+σ, 1

2 (1+α1,2−n(q − 1))+σ,

p2

4m2

)
.

q = 1

(1)× 2F1

(
1, I1 − n

2
I2

z
)
.

q = 2

(1, θ)× 3F2

(
1, I1 − n

2 , I2 − n
I3 + n

2 , I4 + 1
2 −

n
2

z
)
.

q = 3

(1, θ, θ2)× 3F2

(
I1 − n

2 (q − 1), I2 − n
2 (q − 2), I3 − n

2 q
n
2 , I4 + 1

2 −
n
2 (q − 1)

z
)
.
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derivative of hypergeometric function

To evaluate FI we have to made expansion over parameter of
dimensional regularization ε, namely calculate derivatives over
parameter of hypergeometric function

∞∑
m1,...,ml

∏
i,j

(aj )∑l
k qk mk

(bi )∑l
k qk mk

l∏
n=1

xmn
n

mn!
=

1
εn f1(x1, ...) +

1
εn−1 f2(x1, ...) + ...

We have to derivate the Pochhammer symbol:

d(a)n

da
= (a)n

[
Ψ(a + n)−Ψ(a)

]
= (a)n

n−1∑
k=0

1
a + k

= (a)n
1
a

n−1∑
k=0

(a)k

(a + 1)k

After derivation we have unknown function, that is not of hypergeometric
type.

There exist some algorithms and packages that gives possibility to
express some type of hypergeometric function for some special values of
parameter in terms of known special functions (XSummer (S. Moch, P.
Uwer, S. Weinzierl), HypExp (T. Huber and D. Maitre), M. Kalmykov), etc.
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derivative of hypergeometric function

hypergeometric function with parameter for derivation:

F (a) =
∞∑

n=0

B(n)(a)n
xn

n!

By using the resummation formula

∞∑
n=0

n∑
k=0

A(k , n) =
∞∑

n=0

∞∑
k=0

A(k , n + k)

we could obtain the derivative of hypergeometric function with one
summation index:

dF (a)

da
= x

∞∑
n,k=0

B(n + k + 1)
xn

n!

xk

k !

(1)k (1)n

(2)n+k

(a + 1)n+k (a)k

(a + 1)k

in this form we could see that derivative of hypergeometric function is
hypergeometric function.
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derivative of Gauss hypergeometric function

For the Gauss hypergeometric function derivative 2F1(a, b, c, x):

d
da 2F1

(
a, b
c x

)
=

bx
c

∞∑
k=0

(a)k

(a + 1)k

∞∑
n=0

(a + 1)n+k (b + 1)n+k

(c + 1)n+k

xn+k

(n + k + 1)!

=
bx
c

∞∑
k=0

(1)k (a)k

(a + 1)k

∞∑
n=0

(1)n(a + 1)n+k (b + 1)n+k

(2)n+k (c + 1)n+k

xnxk

n!k !

This hypergeometric series can be understood as a generalized Kampé
de Fériet hypergeometric function

d
da 2F1

(
a, b
c x

)
=

bx
c

F 2:2;1
2:1;0

[
(a + 1, b + 1) : (1, a); (1)
(c + 1, 2) : (a + 1); (−)

x , x
]
.

In establishing the region of convergence we can utilize the parameter
cancellation theorem. By that we could find that region of convergence
for function and its derivate the same
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derivative of any hypergeometric function

the derivative of a hypergeometric function in one of its upper
parameters related to a summation index with any integer coefficient:

dF (a)

da
=

∞∑
k,n1,...,nφ=0

φ∑
ξ=1

|qξ|−1∑
γ=0

xξB(n1, . . . , nξ + k + 1, . . . , nφ)
(1)k (1)nξ

(2)nξ+k

φ∏
r=1

xnr
r xk

ξ

nr !k !

× Γ(a + qξ)

Γ(a)

ξ−1∏
r=1

(a)∑r
λ=1 qλnλ

(a)∑r−1
λ=1 qλnλ

φ∏
r=ξ+1

(a + qξ)∑r
λ=1 qλnλ+qξk

(a + qξ)∑r−1
λ=1 qλnλ+qξk

×
(a + qξ)∑ξ

λ=1 qλnλ+qξk

(a)∑ξ−1
λ=1 qλnλ

β ,

β =
1

a + γ

(a + γ)∑ξ−1
λ=1 qλnλ+qξk

(a + γ + 1)∑ξ−1
λ=1 qλnλ+qξk

, qξ > 0 ,

β = − 1
a− γ − 1

(a− γ − 1)∑ξ−1
λ=1 qλnλ+qξk

(a− γ)∑ξ−1
λ=1 qλnλ+qξk

, qξ < 0 .
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derivative of any hypergeometric function and Feynman integral

Derivatives of the generalized Lauricella series, i.e., of Horn-type
hypergeometric series with summation coefficients qk ∈ N, in one of
their (upper or lower) parameters can be expressed as a finite sum of the
generalized Lauricella series

Feynman integrals and the ε expansion of Feynman integrals at any
order are expressible in terms of generalized Lauricella series
the n-th term of the ε series can be expressed as a Horn-type
hypergeometric function in n + m variables, where m is the number of
summations in the Horn-type representation of the Feynman integral

The region of convergence of any of these parameter derivatives, i.e.,
the coefficients in the ε expansion, and the initial Feynman integral are
the same

By expressing the ε expansion of a Feynman diagram in terms of
Horn-type hypergeometric functions and applying the above-mentioned
method of differential reduction, one can reduce the corresponding
integrals to some subset of basic hypergeometric functions and express
them as series with the least number of infinite summations
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differential system

The key feature that for derivatives of hypergeometric function (Feynman
Integral) we could construct full differential system (Fuchsian type)

From that system it is possible to obtain full system of differential
equations (Fuchsian type) with lower number of variables- we could
move the variables to the parameters of function.

∞∑
m1,...,ml

C(a1, .....aj )
xmn

n

mn!
→

∞∑
m1,...,ml−1

C(a1, .....aj , xk )
xmn

n

mn!

New system is of Fuchsian type, that gives us possibility to obtain the
answer by Frobenius method- in terms of power series solution.

New power series are not hypergeometric.
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Gauss hypergeometric function transformation

Derivative of Gauss hypergeometric function (series of two variables):

d
da 2F1

(
a, b
c x

)
=

bx
c

∞∑
k=0

(1)k (a)k

(a + 1)k

∞∑
n=0

(1)n(a + 1)n+k (b + 1)n+k

(2)n+k (c + 1)n+k

xnxk

n!k !

After full differential system construction, we could find the
nonhomogeneous differential equation over one variable:

x2(x − 1)f ′′ + x(−2− c + (3 + a + b)x)f ′ + (−c + (1 + a)(1 + b)x)f

= −c 2F1(a, b + 1, c, x)

It is a Fuchsian type equation, so we could construct convergent power
series in one variable by Frobenius method.

the function f is not hypergeometric one

we could construct homogeneous differential equation of fourth order.
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thank you for attention

thank you for attention



Title Introduction Hypergeometric function Hypergeometric function The Mellin-Barnes Representation differential reduction method derivative of hypergeometric function

hypergeometric function of one variable, special cases

The upper implemented function finds the equation:
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