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Motivation for (Q?)

In pQCD, a(Q?) = as(Q?)/7 (Q? = —g?) has Landau singularities, i.e.,
singularities at 0 < Q2 < 0.1 GeV? (—0.1 GeV2 < g% < 0). Thisis a
mathematical consequence of the pQCD truncated [3-function RGE

2
Zd‘z,(QQz ) = Goa(@) [1 4+ aa(@) + 0a( @ + -+ cNa(Q2)N]

(1)

Q

@ This contradicts the general principles of QFT for spacelike physical
quantities D(Q?), which require D(Q?) to be analytic (holomorphic)
in the complex @?-plane with the exception of part of the negative
axis: Q% € C\(—oo0, —I\/Iszthr], where Mp thy ~ 0.1 GeV.

e The Landau singularities of a(Q?) make the evaluation of TPS
D(Q?)pt = a(Q%) + -+ - + dy_12(Q*)N at low |@%| ~ 1 GeV? very
unreliable or simply impossible (cf. D.V. Shirkov et al., 1997).
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Motivation for (Q?)

Another coupling A(Q?) needs to replace a(@?):

Q@ A(Q?) is a holomorphic function for @2 € C\(—o0, —M?3_ ].

@ At high |Q?| > 1 GeV? we should have practically A(Q?) = a(Q?)
(PQCD at high |Q2]).

@ At intermediate |@?| ~ 1 GeV?, the A(Q?)-approach should
reproduce the well measured semihadronic 7-decay physics.

Q Atlow |Q? <0.1 GeV?, we should have A(Q?) ~ Q?, as suggested
by lattice results for the Landau gauge gluon and ghost propagators.

It turns out that the above property 1 will be a byproduct of the
construction of A(Q?) which should fulfill the above properties 2-4.
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Construction of  (Q?)

In pQCD we have for a(Q?) = as(Q?)/:

ZM(@)Z3 (@
ZM (@2

a(Q%) = a(A?) ) (2)

where Zy1, Zy1,, Z1 are the dressing functions of the gluon and ghost
propagator, and of the gluon-ghost-ghost vertex.

In the Landau gauge, Zl(A)(Q2) =1 to all orders (J.C.Taylor, 1971). Hence
At (@) = A, () ZP(Q@)ZP (@22 . (3)

Alate.(Q%) = A(Q%) + AANp(Q?) - (4)

Lattice calculation give Ap:t (Q?) ~ Q2% at @% — 0. No finetuning at
Q% — 0 implies:

AANp(Q®) ~ Q*  and A(Q*)~ Q> (Q*—0) (5)

Gorazd Cveti¢ (UTFSM, Valparaiso) QCD coupling + lattice 25 July 2018 4/35



Construction of  (Q?)
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Figure: The N = 0 lattice values m At (Q%) at low Q?, from (Bogolubsky, llgenfritz,
Miiller-Preussker, Sternbeck [BIMS], 2009). The squared momenta are rescaled, from
the MiniMOM (MM) lattice scheme scale to the usual MS-like scale at N¢ = 0. The
solid curve is the (N = 3) theoretical coupling in the same IR regime (see later).
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Construction of  (Q?)

The underlying pQCD coupling a(@?) is in the same scheme up to 4-loops
(G.C. and |.Kondrashuk, JHEP, 2011):

(0D = Z|-vE-1-wn(e)

1
+\/(\/a72+1+ W;l(z))2—4(w1+\/072)] , (6)

where Q2 = |Q?|exp(i¢), W_1 Lambert function is used when 0 < ¢ < T,
and W3 when —1 < ¢ < 0, and

2 3 2 1 A2\
w1 = o/, w=c/q, z=2(Q%) =— c1e(02> » (7)
and the scheme coefficients are for Lambert MiniMOM (with Nf = 3):
¢ = 9.2970(4.4711 in MS), c3 = 71.4538(20.9902 in MS) .  (8)

The world average (2014) as(M%; MS) = 0.1185 implies: A, = 0.1156
GeV.
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Construction of  (Q?)

The dispersive relation for a(@?)

SCOREY B o < TR} Q

where p,(0) = Im a(Q? = —o — ie).
The dispersive relation for A(Q?)

N e dapa(o)
AQ) = T /G—thr_n (c + Q?) (7= +0), (10)

where p4(0) =Im A(Q? = —0o — ic).
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Construction of  (Q?)
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Figure: (a) The contour of integration for the integrand a(Q"?)/(Q" — Q?) leading to
the dispersion relation (9) for a(@?); (b) the contour of integration for the integrand

A(Q?)/(Q” — @?) leading to the dispersion relation (10). The radius o’ of the circular
part tends to infinity.
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Construction of  (Q?)

AAR(Q?) =

dopa(o)

1 o0
T /(,-Mz (01 Qh TAARQ), (119)
1 (M dopa(o)
P, G (110)
A/L_l An 2n
M
JT-'.
2 m ' (12b)
j=1
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Construction of  (Q?)

We take M = 3:
2 2 & Fj
(@) = BIAI@) =) 5 (132)
3
Spalo) = 7Y Fidlo—M7) (0<o<Mj), (13b)
j=1
This means
3
pa(o) =m Y  Fjd(o—M;)+6(o — Mp)pa(o) . (14)
j=1
A(Q?) = 23: _Fi + 1 /Oo doM (15)
(@M 7wy (Q+0)
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Construction of  (Q?)

We want at |Q?| > 1 GeV?

5
A -~ () (@=nn. o)

This, and the lattice condition A(Q?) ~ Q2 at Q% — 0, give 4-+1
conditions

1 M &
/ doop.(0) = Z]—" M2 (k=0,1,2,3). (17a)
mJ-a,
1/°° pa(0) Fj
= | do AN (17b)
T o X; M;
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Construction of  (Q?)

But we have 7 parameters, we need 7 conditions, i.e., two more:
Q@ Q2. ~0.135 GeV? by lattice calculations, where A(Q2..) = Amax-

@ A-coupling framework should reproduce the approximately correct
value of r{P= ~ 0.20 (cf. Schael et al. [ALEPH], 2005) where

(p=0) 1 [T 613 ” ) 2 6
A = o [ do (L eP(1- ) d(Q® = m2e% D= 0).
(18)
Here, d(Q?; D = 0) is the massless Adler function,

d(Q?% D =0) = —1—272dM(Q? D = 0)/dIn @2, and its perturbation
expansion is known up to ~ a*

3
d(Q% D =0) = a(Q%) + > dpa( @)™, (19)
n=1

Gorazd Cveti¢ (UTFSM, Valparaiso) QCD coupling + lattice 25 July 2018 12/35



Construction of  (Q?)

In our approach, a(@?)" — A,(Q?) (# A(Q?)"), (G.C., C. Valenzuela,
2006) and

d(@?% D = 0)8l = A(Q?) + d1A>(Q) + b A3(@?) + d3Aa(Q7).  (20)

Nonetheless, another resummation is even more efficient (G.C., 1998; G.C.
and R. Kogerler, 2011; G.C. and C. Villavicencio, 2012):

d(Q* D=0l =1 AmQ@) + (1 —a1) A(x2Q%) . (21)
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Construction of  (Q?)

These seven conditions (with rT(?h:O) = 0.201) then give:
M2 = 8719 GeV?;
M3 =0.053 GeV?, M3 = 0.247 GeV?, M3 = 6.341 GeV?;
F1=—-0.0383 GeV?, F, = 0.1578 GeV?, F3=0.0703 GeV?.

It results that all MJ2 > 0, therefore the resulting coupling A(Q?) is
holomorphic not by imposition, but as a result of the high-, intermediate-
and low-energy (physically-motivated) conditions.

Gorazd Cveti¢ (UTFSM, Valparaiso) QCD coupling + lattice 25 July 2018 14 /35



Construction of  (Q?)
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Figure: (a) The spectral function p,(c) = Im a(Q? = —o — ic) for the underlying

pQCD coupling in the four-loop Lambert MM scheme, o is on linear scale; (b)

pa(o) =Im A(Q? = —o — ie) of the considered holomorphic coupling A(Q?), o > 0 is
on logarithmic scale. The delta function at M? is in fact negative (only presented as
positive).
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Construction of  (Q?)
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Figure: The considered holomorphic coupling A at positive Q* (solid curve) and its
underlying pQCD coupling a (light dashed curve). Included is A, (dashed curve) which
is the A-analog of power a® [cf. Eq. (50)], and the naive (i.e., unusable) power A2

(dot-dashed curve). Further, the usual MS coupling 3 (dotted curve) is included.
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Applications: |. Borel sum rules for semihadronic 7 decay
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Figure: Borel transforms ReB(M?) along the rays M? = |M?| exp(i¥) with W = 7/6
(left-hand side) and W = 7/4 (right-hand side), as a function of |M?|.
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Applications: |. Borel sum rules for semihadronic 7 decay

Combining fits for OPAL and ALEPH data gives:

(aGG) = (—0.0046 + 0.0025) GeV* (23a)
X2 4.6-10"%(0OP); 1.3-10°(AL);
Xop = 1.4-107*(OP); 1.4107°(AL)
(Og)yia = (+0.0014 4 0.0002) GeV® (23b)
X2 1.2-107%(0P);3.5 - 10> (AL);
Xop = 2.0-107%(OP);2.0-10°(AL)

(aGG)zs = (+0.0047 +0.0016) GeV* (24a)
g = 1.4-107°(0P);5.2-107°(AL),
(Os)yyans = (—0.0013+0.0002) GeV® (24b)

Xorg = 3.8-107°(0P);1.2-10 *(AL).
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Applications: |. Borel sum rules for semihadronic 7 decay
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Figure: Analogous to the previous Figures, but now the Borel transforms B(M?) are for
real M* > 0.
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Applications: |. Borel sum rules for semihadronic 7 decay

Cross-check with rT(DZO):

(D=0) _ o ome do 1- 2 i 1422 1
rT,exp - 0 m2 - m2 + m2 wexp(a)_

T

~ (0.198 £0.006) + 0.005 = 0.203 £ 0.006 .

In the MS case, this type of consistency is lost, because in this case
(Og)v4a = —0.0014 GeV® and thus

r0=0) s = (0.198 £ 0.006) — 0.005 = 0.193 + 0.006, this differing by

about two standard deviations from the theoretical value in the MS

approach, rr(,?}TO)(d,[,ﬂm) =0.182.
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Applications: Il. V-channel Adler function

dny(Q?)
2y — a2 29llv
bu(Q) = 4= o
2(0ap)
= 1+d(Q*%D=0) +22Z” 02 . (26)
n>2
Here
2(0s)v = 2(0a)a = (Oa)v+a - (27)
The factorization hypothesis gives
7
{Os)v ~ =4 (O6)v-+a, (28)
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Applications: Il. V-channel Adler function
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Figure: The V-channel Adler function at Q2 > 0 Q= \/&) the brown band are the
experimental values (A.V. Nesterenko, 2016, Fig. 1.7 there). The solid lines are the theoretical
curves for as(M32) = 0.1181 (upper), 0.1185 (middle), 0.1189 (lower curve) in the AQCD+OPE
approach, and the dash-dotted lines are in the MS pQCD+OPE approach. The dashed line is

the leading twist (LT) contribution in AQCD, and the dotted line in MS pQCD, for

as(M2) = 0.1185. The D =4 and D = 6 terms (higher-twist) are with the corresponding

values of the condensates as explained in the text. N¢ = 3 is used: throughout:
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Applications: Il. V-channel Adler function

Massive Adler approach (mAQCD):

Dv(Q¥)mageo = DOWQY)m

QZ 1 +o00 m? Pd(U)
e <1 - o) CEx SR

where m = 2m; kinematic threshold (cf. A.V. Nesterenko 2015), and the
leading order term is

1/2
PO(Q?),, = 1+% 1—|—<1+212> ArcSinh(z)] \/»(303)
z=1/Q%/m
2, 8 4 6
£2_ 2 — 30b
52 7357 11057 T |l geyme (306)
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Applications: Il. V-channel Adler function
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FIgU r€: The V-channel Adler function at Q2 > 0 (R = \/&) the brown band are the experimental values as in the
previous Figure. The three solid lines are the theoretical curves for as(Mg) = 0.1189 (upper), 0.1185 (middle), 0.1181 (lower
curve) in the massive AQCD approach (mLO+m.AQCD). The dash-dotted line is the massless limit (m? — 0), for

ozs(M%) = 0.1185. The dashed line is for the massive leading order term Dﬁj’)(cﬁ)m and massless AQCD term

(mLO+.AQCD), for as(Mg) = 0.1185. The dotted line (MLO+mAPT) is the case where py(o) in Eq. (29) is the pQCD
spectral function, as explained in the text. N¢ = 3 is used throughout for p4(c).
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Applications: Ill. Bjorken polarized sum rule

The polarized Bjorken sum rule (BSR), F’f_", is the difference betweenthe
integrals, over the whole x-Bjorken interval, of the proton and neutron
polarized structure functions gy

1
(@) = [ o [gf(x @)~ g (x. @) - €y
Theoretical Operator Product Expansion (OPE) form
~nOPE( 2y 8A p2i( Q?)
re=nOPE(Q?) ‘ ‘6 Z g (32)

Here, |ga/gv| is the ratio of the nucleon axial charge.
The leading-twist part is

Dps(@®)aqep = A(KQ?) + di(k)A2(kQ?) + da(k; c2).A3(kQ?)
+d3(k; 2, c3).Aa(kQ?) + O(As). (33)
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Applications: Ill. Bjorken polarized sum rule
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Figure: Fit to inelastic BjPSR, with two HT-terms [14(Q%)/Q? and us/(Q?)?], but shifted
upwards by the parametrized elastic contribution [~ (A%2/Q%)%].
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Conclusions

A QCD coupling A(Qz) was constructed, in the lattice MiniMOM scheme
(rescaled to the usual Ajg scale convention). Mathematica programs
available online: http://www.gcvetic.usm.cl/ (prgs. “413danQCD...").
Q@ A(Q?) reproduces pQCD results at high momenta |@?| > 1 GeV?.
Q@ A(Q?) ~ @? at low momenta Q% — 0 (|Q?| < 0.1 GeV?), as
suggested by high-volume lattice results.
A(Q?) at intermediate momenta |Q?| ~ 1 GeV? reproduces the well
measured physics of semihadronic 7-lepton decay.
A(Q?), as a byproduct of construction, possesses the attractive
holomorphic behavior shared by QCD spacelike physical quantities.
Several successful applications of A(Q?)-QCD in low-|Q?|
phenomenology.
The usual MS pQCD coupling a(@?; MS) = as(Q?; MS) /7 shares with
the coupling A only the first (high-momentum) property, but on the other
three properties it either fails (points 2 and 4) or is considerably worse
(point 3).
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Appendix 1: Borel sum rules for semihadronic 7 decay

[ d'x eX(T100400)) = (a0 — g0 ?)N(QP) + 0,0.1(@?)
(34)
where Q2= —¢?, J = V, A, and the quark currents are J,, = U,d (when
J=V), J, = Tyusd (When J=A).
N(@2) = n{(@%) + NP Q%) + ” (Q2) (35)
Sum rules are:

/ " dog(—0)wexp(0) = —im y{Q | dQ%g(@*)Mwm(Q%) ,  (36)
0 2 =0 max

where omax < m2 and w(o) is the spectral (discontinuity) function of
M(Q?) along the cut
w(o) =27 Im N(Q? = —0 — ie) | (37)

Gorazd Cveti¢ (UTFSM, Valparaiso) QCD coupling + lattice 25 July 2018 28/35



Appendix 1: Borel sum rules for semihadronic 7 decay
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Figure: (a) The spectral function wyya(o) es measured by OPAL Collaboration
(left-hand figure) and by ALEPH Collaboration (right-hand figure). The pion peak
contribution 27°f25(0 — m2) (where f, = 0.1340 GeV) must be added to this
(accounting for the pion contribution but without the chiral m. # 0 effects).
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Appendix 1: Borel sum rules for semihadronic 7 decay

Men(Q@%) = ——In(@z/u )+Min (@ D=0) +Z )
n>2 Q )
(38)
where C,, =~ 0. Borel sum rules are for the choice
g(@) = gne(@ )= exp(Q2/M2) (39)
Defining the full Adler function D(Qz)
dMN, (Q?
D(Qz) = —27T2M =1+ d(QQ; =0)+ 27
din Qz n>2
gives the Borel sum rules in the form
]. Tmax 2 I i dQ 2 Q2 M2
I\/12/0 doexp(—0 /M )wexp(0) = Tor o Q2 52 P(Q )[e /
—0max M2
—€ / :| ‘szo'max eXp(id“) '
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Appendix 1: Borel sum rules for semihadronic 7 decay

Hence, the Borel sum rule has the form

ReBeyp(M?) = ReByy(M?) , (40)

Omax do-

where :  Beyxp(M?) = / Wexp(—a//\/l2)wexp(a)v+,4,
0

Bin(M?) = (1— exp(—0max/M?)) + Bu(M?; D=0)

O2n
o 2
* Z (n— 1)1 (M2)n > (412)
n>2
where the leading-twist contributions (D = 0) is
Jmaxei¢
Bth(M2;D O = / d¢d —Umaxe —O)[exp( M?2 )
Omax
—exp <— 2 ) ] . (42)
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Appendix 1: Borel sum rules for semihadronic 7 decay

The Borel scale M? is taken along rays in the complex M?-plane which we
will choose as:

= |M?|exp(iV), 0.65GeV? < |M?| < 1.50GeV?, W =7/6,7/4,0.
(43)

@ At low Borel scales M? the Borel transform B(M?) probes the low-o
(IR) regime. On the other hand, the high-o (UV) contributions have
larger experimental uncertainties dw(o) and are suppressed in the
Borel transform.

Q When M? = |M?| exp(im/6), it is straightforward to see that the
= 6 term in ReB,(M?) is zero (and thus only the D = 4
higher—twist term survives). Analogously, when M? = |M?| exp(im/4),
the D = 4 term in Re By, (M?) is zero (and thus only the D = 6
higher-twist term survives). This helps us extract more easily the
values of the condensates (O4) = (1/6)(aGG) and (Os) for
M? = |M?| exp(iT/6), |M?| exp(i/4), respectively.
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Appendix 2: Higher power analogs

The analytic version (a")an = Ap, of the analogs of higher powers a” of the
(underlying) pQCD coupling, for integer n, was constructed in the general
case of holomophic QCD (G.C.and C. Valenzuela, 2006, JPG and PRD).
We recapitulate it briefly here. The construction goes via a detour by
considering first, instead of the powers a”, the logarithmic derivatives

(—1)" 9"a(Q?)
Bent d(In Q)" 7

According to RGE, we have 3,.1(Q?) = a(Q?)™! + O(a"*2).

a,11(Q%) =

(n=1,2,...). (44)
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Appendix 2: Higher power analogs

Specifically, we have

B = P4agadtoeat+, (45)
- 5 -
a3 = a3+§c134+~-, ap=at4-- ete. . (46)

Inverting these relations gives

~ ~ 5 ~
32 = apy— a3+ <2Cf — C2> as+ -, (47)

-~ 5 _ ~
a® = 33—§C184+"', at=a+ etc. (48)
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Appendix 2: Higher power analogs

The linearity of “analytization” implies that in holomorphic QCD the
correponding analogs of logarithmic derivatives are constructed in the very
same way

(-1)" 9"A(Q?)
Bont d(In Q2)"

Further, the linearity of the relations (48) implies that the analogs A, A3,
Ay of the powers a” are obtained in the same way

Ani1(Q%) = (n=1,2,...). (49)

5 ~
A = (32)a _A2_C1A3+(2C1—C2>A4+... 7 (50)
~ 5 - B
Az = (33)an = Az — §C1A4 +o, Ag= (34)an =As+--- (51)
etc. For TPS dl, we truncate the above relations at A4 (including Aj).
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