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Motivations

Based on [R. Lee, A. Smirnov & V.S., arXiv:1805.00227℄

It is a sequel of [R. Lee, A. Smirnov & V.S.'17℄:

an algorithm to �nd a solution of di�erential equations for

master integrals in the form of an ǫ-expansion series with

numerial oe�ients.

The algorithm is based on using generalized power series

expansions near singular points of the di�erential system,

solving di�erene equations for the orresponding oe�ients

in these expansions and using mathing to onnet series

expansions at two neighbouring points.
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Motivations

Typially, analytial results for Feynman integrals an be

expressed in terms of harmoni polylogarithms or multiple

polylogarithms whih are very well mathematially studied

speial funtions introdued by physiists.

HPL, GiNaC

The possibility to arrive at a result written in terms of these

funtions exists if one sueeds to turn to a so-alled anonial

basis [J.M. Henn'13℄ using rational transformations.

The ε-form is not always possible. The simplest ounter

example is the two-loop sunset diagram with three equal

non-zero masses. Ellipti funtions and their generalizations

appear.
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situations where the ε-form is not possible.

It is very natural to try to introdue new funtions.

Ellipti generalization of multiple polylogarithms motivated by

two-loop examples, where the ε-form is impossible

[L. Adams, C. Bogner, A. Shweitzer & S. Weinzierl'16;

E. Remiddi & L. Tanredi'17; M. Hidding & F. Moriello'17;

J. Broedel, C. Duhr, F. Dulat & L. Tanredi'17, J. Ablinger et

al.'17, J. Broedel, C. Duhr, F. Dulat, B. Penante &

L. Tanredi'18℄

Still we are far, even in lower loops orders, from answering the

following question:

`What is the lass of funtions whih an appear in results for

Feynman integrals in situations where ǫ-form is impossible'?
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Motivations

Our setup

Our example: four-loop generalized sunset diagrams with

three massive and two massless propagators

Our goal: to use our algorithm and the orresponding

ode for our example in order to obtain new analytial

results.

We analytially evaluate the master integrals at threshold,

p

2 = 9m

2

, in an expansion in ε up to ε1.

Perspetives
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Our setup

Let us onsider Feynman integrals with two sales and let x be

the ratio of these sales.

DE

∂
x

J = M (x , ε) J ,

where J = (J
1

, . . . , J
N

) are N master integrals.

We imply that all the singular points of DE are regular, i.e. we

an redue the DE to a loal Fuhsian form at any singular

point, i.e. if x

i

is a singular point then

M (x) =
A

i

(x)

x − x

i

where A

i

(x) is regular at x = x

i

and A

i

(x
i

) 6= 0.
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Our setup

General solution

J (x) = U (x)C ,

where C is a olumn of onstants, and U is an evolution

operator

U (x) = P exp

[
∫

M (x) dx

]

.
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Our setup

Expanding in a viinity of eah singular point.

Take x = 0.

The expansion is

U (x) =
∑

λ∈S

x

λ

∞
∑

n=0

Kλ
∑

k=0

1

k!
C (n + λ, k) xn lnk x ,

where S is a �nite set of powers of the form λ = rǫ with
integer r , Kλ > 0 is an integer number orresponding to the

the maximal power of the logarithm.

The goal is to determine S , Kλ, and the matrix oe�ients

C (n + λ, k).
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Our setup

Suppose that DE are in a global normalized Fuhsian form

M (x) =
A

0

x

+

s

∑

k=1

A

k

x − x

k

and for any k = 0, . . . , s the matrix A

k

is free of resonanes,

i.e. the di�erene of any two of its distint eigenvalues is not

integer.

In partiular, the `ellipti' ases, as a rule, an algorithmially

be redued to a global normalized Fuhsian form using, e.g.,

the algorithm of Lee [R.N. Lee'14℄.
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Our setup

DE → di�erene equations for the matrix oe�ients

C (n + λ, k).

Our algorithm provides solutions with no more than a linear

growth of omputational omplexity with respet to a required

number of terms.

This is very important for the subsequent step: the mathing

proedure whih enables one to onnet series expansions at

two neighbouring points and thereby to obtain the possibility

to evaluate Feynman integrals at any given point.

Boundary onditions are inluded at one of the singular points

and then series expansions at other points an be obtained by

mathing, step by step, pairs of expansions at neighboring

points.



Evaluating `ellipti' master integrals at speial kinemati values: using di�erential equations and their solutions via expansions near singular points

Our setup

Using series expansions at singular points and solving

di�erene equations:



Evaluating `ellipti' master integrals at speial kinemati values: using di�erential equations and their solutions via expansions near singular points

Our setup

Using series expansions at singular points and solving

di�erene equations:

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄

(evaluating three-loop massive vauum diagrams)



Evaluating `ellipti' master integrals at speial kinemati values: using di�erential equations and their solutions via expansions near singular points

Our setup

Using series expansions at singular points and solving

di�erene equations:

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄

(evaluating three-loop massive vauum diagrams)

[R. Mueller & D. G.

�

Ozt�urk'16; J. M. Henn, A. V. Smirnov &

V. A. Smirnov'16℄

(applying general theory of DE for evaluating expansion of

two-sale integrals at a given singular point)



Evaluating `ellipti' master integrals at speial kinemati values: using di�erential equations and their solutions via expansions near singular points

Our setup

Using series expansions at singular points and solving

di�erene equations:

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄

(evaluating three-loop massive vauum diagrams)

[R. Mueller & D. G.

�

Ozt�urk'16; J. M. Henn, A. V. Smirnov &

V. A. Smirnov'16℄

(applying general theory of DE for evaluating expansion of

two-sale integrals at a given singular point)

[K. Melnikov, L. Tanredi and C. Wever'16℄

(evaluating expansions of solutions of DE at a given singular

point by di�erene equations)



Evaluating `ellipti' master integrals at speial kinemati values: using di�erential equations and their solutions via expansions near singular points

Our setup

Using series expansions at singular points and solving

di�erene equations:

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄

(evaluating three-loop massive vauum diagrams)

[R. Mueller & D. G.

�

Ozt�urk'16; J. M. Henn, A. V. Smirnov &

V. A. Smirnov'16℄

(applying general theory of DE for evaluating expansion of

two-sale integrals at a given singular point)

[K. Melnikov, L. Tanredi and C. Wever'16℄

(evaluating expansions of solutions of DE at a given singular

point by di�erene equations)

[X. Liu, Y.Q. Ma & C.Y. Wang'17℄

(solving DE wrt η in propagators 1/(k2 + i0) → 1/(k2 + iη))



Evaluating `ellipti' master integrals at speial kinemati values: using di�erential equations and their solutions via expansions near singular points

Our example

Feynman integrals orresponding to the generalized sunset

graph with two massless and three massive lines



Evaluating `ellipti' master integrals at speial kinemati values: using di�erential equations and their solutions via expansions near singular points

Our example

Feynman integrals orresponding to the generalized sunset

graph with two massless and three massive lines

F

a

1

,...,a
14

=
∫

. . .

∫

d

D

k

1

. . . d

D

k

4

(k
1

· p)a6(k
2

· p)a7(k
3

· p)a8(k
4

· p)a9
(−k2

1

)a1(−k2
2

)a2(m2 − k

2

3

)a3(m2 − k

2

4

)a4(m2 − (
∑

k

i

+ p)2)a5

× (k
1

· k
2

)a10(k
1

· k
3

)a11(k
1

· k
4

)a12(k
2

· k
3

)a13(k
2

· k
4

)a14 ,

with x = p

2/m2

.



Evaluating `ellipti' master integrals at speial kinemati values: using di�erential equations and their solutions via expansions near singular points

Our example

Feynman integrals orresponding to the generalized sunset

graph with two massless and three massive lines

F

a

1

,...,a
14

=
∫

. . .

∫

d

D

k

1

. . . d

D

k

4

(k
1

· p)a6(k
2

· p)a7(k
3

· p)a8(k
4

· p)a9
(−k2

1

)a1(−k2
2

)a2(m2 − k

2

3

)a3(m2 − k

2

4

)a4(m2 − (
∑

k

i

+ p)2)a5

× (k
1

· k
2

)a10(k
1

· k
3

)a11(k
1

· k
4

)a12(k
2

· k
3

)a13(k
2

· k
4

)a14 ,

with x = p

2/m2

.

There are four master integrals in this family.



Evaluating `ellipti' master integrals at speial kinemati values: using di�erential equations and their solutions via expansions near singular points

Our example

Feynman integrals orresponding to the generalized sunset

graph with two massless and three massive lines

F

a

1

,...,a
14

=
∫

. . .

∫

d

D

k

1

. . . d

D

k

4

(k
1

· p)a6(k
2

· p)a7(k
3

· p)a8(k
4

· p)a9
(−k2

1

)a1(−k2
2

)a2(m2 − k

2

3

)a3(m2 − k

2

4

)a4(m2 − (
∑

k

i

+ p)2)a5

× (k
1

· k
2

)a10(k
1

· k
3

)a11(k
1

· k
4

)a12(k
2

· k
3

)a13(k
2

· k
4

)a14 ,

with x = p

2/m2

.

There are four master integrals in this family. We hoose

{F
1,1,1,1,1,0,...,0, F1,1,2,1,1,0,...,0, F1,2,1,1,1,0,...,0, F1,2,1,1,2,0,...,0} .
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Our example

The singular points are

x

0

= 0, x
1

= 1, x
2

= 9, x
3

= x−1

= ∞
The ode DESS.m
https://bitbuket.org/feynmanintegrals/dess

Using this ode it is possible to evaluate master integrals at a

given point as well as expansions at singular points with a

required preision in an ǫ-expansion with a required number of

terms.

The goal: to evaluate master integrals onsidered at threshold,

p

2 = 9m

2

,

{J
1

= F

1,1,1,1,1,0,...,0, J2 = F

1,1,2,1,1,0,...,0, J3 = F

1,2,1,1,1,0,...,0} .

https://bitbucket.org/feynmanintegrals/dess
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= 9.

analytial results up to weight 7 an be taken from
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x

3

= ∞: simple onstants; it is also a neighbour of x

2

= 9.

The orresponding expansion is a large-momentum expansion

[K.G. Chetyrkin'88, V.S.'90℄ where every term is a produt of

one-loop tadpoles and massless propagator integrals. It

provides any required auray and any required number of

terms in ε-expansions in the boundary onditions.
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Our example

DESS[rdatas, x, f(x), oe, np, nt, ns℄

where ns means the number of a singular point and this

number is 1 for x

0

, 2 for x

1

, and 4 for x

3

.

We hoose ns=4.

Using DESS we obtain numerial results for the threshold

master integrals in an ε-expansion up to ε2 with the auray

of 20000 digits for the orresponding oe�ients.

Apply the PSLQ algorithm

[H.R.P. Ferguson, D.H. Bailey & S. Arno'99℄

FindIntegerNullVetor in Mathematia
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Results for the two-loop sunset diagram at threshold

[F.A. Berends & A.I. Davydyhev'97, A.I. Davydyhev &

V.S.'99℄:

multiple polylogarithm values at sixth roots of unity up to

weight 3 [D.J. Broadhurst'98℄

and

π√
3

.

[J. Fleisher & M.Y. Kalmykov'99, A.I. Davydyhev &

M.Y. Kalmykov'00, M.Y. Kalmykov & B.A. Kniehl'10℄:

inlude

√
3 separately.
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Our example

The hoie of a basis of onstants?

Results for the two-loop sunset diagram at threshold

[F.A. Berends & A.I. Davydyhev'97, A.I. Davydyhev &

V.S.'99℄:

multiple polylogarithm values at sixth roots of unity up to

weight 3 [D.J. Broadhurst'98℄

and

π√
3

.

[J. Fleisher & M.Y. Kalmykov'99, A.I. Davydyhev &

M.Y. Kalmykov'00, M.Y. Kalmykov & B.A. Kniehl'10℄:

inlude

√
3 separately.

Let us use multiple polylogarithm values at sixth roots of unity

onstruted up to weight 6

[J.M. Henn, A.V. Smirnov & V.S.'17℄ and

√
3.
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G (a
1

, . . . , a
w

; 1),
where the indies a

i

are equal to zero or a sixth root of unity,

i.e. taken from the alphabet {0, r
1

, r
3

,−1, r
4

, r
2

, 1} with

r

1,2 =
1

2

(

1±
√
3 i

)

= λ±1 , r

3,4 =
1

2

(

−1±
√
3 i

)

= λ±2 ,

λ = e

πi/3 = r

1

and a

1

6= 1.
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Our example

G (a
1

, . . . , a
w

; 1),
where the indies a

i

are equal to zero or a sixth root of unity,

i.e. taken from the alphabet {0, r
1

, r
3

,−1, r
4

, r
2

, 1} with

r

1,2 =
1

2

(

1±
√
3 i

)

= λ±1 , r

3,4 =
1

2

(

−1±
√
3 i

)

= λ±2 ,

λ = e

πi/3 = r

1

and a

1

6= 1.

G (a
1

, . . . , a
w

; z) =

∫

z

0

1

t − a

1

G (a
2

, . . . , a
w

; t) dt

with a

i

, z ∈ C and G (z) = 1.

G (0, . . . , 0; z) =
1

n!
log

n

z .



Evaluating `ellipti' master integrals at speial kinemati values: using di�erential equations and their solutions via expansions near singular points

Our example

G (a
1

, . . . , a
w

; 1) = G

R
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1
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G (a
1

, . . . , a
w

; 1) = G

R

(a
1

, . . . , a
w

) + iG

I

(a
1

, . . . , a
w

)

Let us denote by B

R

(w) (B
I

(w)) the bases generated by

G

R

(a
1

, . . . , a
w

) (G
I

(a
1

, . . . , a
w

)).
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G (a
1

, . . . , a
w

; 1) = G

R

(a
1

, . . . , a
w

) + iG

I

(a
1

, . . . , a
w

)

Let us denote by B

R

(w) (B
I

(w)) the bases generated by

G

R

(a
1

, . . . , a
w

) (G
I

(a
1

, . . . , a
w

)).

[J.M. Henn, A.V. Smirnov & V.S.'17℄:

B

R

(1) =

{

G

R

(−1) = log(2), G

R

(r
4

) =
1

2

log(3)

}

,

B

I

(1) =
{

G

I

(r
2

) = −π

3

}

.
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Our example

B

R

(2) =

{GR[r2, -1℄,

GR[-1℄^2, GI[r2℄^2, GR[-1℄ GR[r4℄, GR[r4℄^2}

B

I

(2) =

{GI[0, r2℄,

GI[r2℄ GR[-1℄, GI[r2℄ GR[r4℄}

B

R

(3) =

{GR[0, 0, 1℄, GR[r2, 1, -1℄, GR[r2, 1, r3℄,

GR[-1℄^3, GI[r2℄^2 GR[-1℄, GR[-1℄^2 GR[r4℄, GI[r2℄^2 GR[r4℄,

GR[-1℄ GR[r4℄^2, GR[r4℄^3, GI[r2℄ GI[0, r2℄, GR[-1℄ GR[r2, -1℄,

GR[r4℄ GR[r2, -1℄}

B

I

(3) =

{GI[0, 1, r4℄, GI[0, r2, -1℄,

GI[r2℄ GR[-1℄^2, GI[r2℄^3, GI[r2℄ GR[-1℄ GR[r4℄, GI[r2℄GR[r4℄^2,

GI[0, r2℄ GR[-1℄, GI[0, r2℄ GR[r4℄, GI[r2℄ GR[r2, -1℄}
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Our example

B

R

(4) =

{GR[0, 0, r2, -1℄, GR[0, 0, r4, 1℄, GR[r2, 1, 1, -1℄,

GR[r2, 1, 1, r3℄, GR[r2, 1, r2, -1℄}

and

{GR[-1℄^4, GI[r2℄^2 GR[-1℄^2, GI[r2℄^4, GR[-1℄^3 GR[r4℄,

GI[r2℄^2 GR[-1℄ GR[r4℄, GR[-1℄^2 GR[r4℄^2, GI[r2℄^2 GR[r4℄^2,

GR[-1℄ GR[r4℄^3, GR[r4℄^4, GI[r2℄ GI[0, r2℄ GR[-1℄,

GI[r2℄ GI[0, r2℄ GR[r4℄, GI[0, r2℄^2, GR[-1℄^2 GR[r2, -1℄,

GI[r2℄^2 GR[r2, -1℄, GR[-1℄ GR[r4℄ GR[r2, -1℄, GR[r4℄^2 GR[r2, -1℄,

GR[r2, -1℄^2, GR[-1℄ GR[0, 0, 1℄, GR[r4℄ GR[0, 0, 1℄,

GI[r2℄ GI[0, 1, r4℄, GI[r2℄ GI[0, r2, -1℄, GR[-1℄ GR[r2, 1, -1℄,

GR[r4℄ GR[r2, 1, -1℄, GR[-1℄ GR[r2, 1, r3℄, GR[r4℄ GR[r2, 1, r3℄}



Evaluating `ellipti' master integrals at speial kinemati values: using di�erential equations and their solutions via expansions near singular points

Our example

B

I

(4) =

{GI[0, 0, 0, r2℄, GI[0, 1, 1, r4℄, GI[0, 1, r2, -1℄, GI[0, 1, r2, r3℄,

GI[0, r2, 1, -1℄}

and

{GI[r2℄ GR[-1℄^3, GI[r2℄^3 GR[-1℄, GI[r2℄ GR[-1℄^2 GR[r4℄,

GI[r2℄^3 GR[r4℄, GI[r2℄ GR[-1℄ GR[r4℄^2, GI[r2℄ GR[r4℄^3,

GI[0, r2℄ GR[-1℄^2, GI[r2℄^2 GI[0, r2℄, GI[0, r2℄ GR[-1℄ GR[r4℄,

GI[0, r2℄ GR[r4℄^2, GI[r2℄ GR[-1℄ GR[r2, -1℄,

GI[r2℄ GR[r4℄ GR[r2, -1℄, GI[0, r2℄ GR[r2, -1℄, GI[r2℄ GR[0, 0, 1℄,

GI[0, 1, r4℄ GR[-1℄, GI[0, 1, r4℄ GR[r4℄, GI[0, r2, -1℄ GR[-1℄,

GI[0, r2, -1℄ GR[r4℄, GI[r2℄ GR[r2, 1, -1℄, GI[r2℄ GR[r2, 1, r3℄}
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Our example

B

R

(5) =
{GR[0, 0, 0, 0, 1℄, GR[0, 0, 1, 1, -1℄, GR[0, 0, 1, 1, r4℄,

GR[0, 0, 1, r2, -1℄, GR[0, 0, 1, r2, r3℄, GR[0, 0, 1, r2, r4℄,

GR[0, 0, r2, 1, -1℄, GR[r2, 1, 1, -1, r2℄, GR[r2, 1, 1, 1, -1℄,

GR[r2, 1, 1, 1, r3℄, GR[r2, 1, 1, r2, -1℄, GR[r2, 1, 1, r2, r3℄,

GR[r2, 1, 1, r4, -1℄}

and

{GR[-1℄^5, GI[r2℄^2 GR[-1℄^3, GI[r2℄^4 GR[-1℄, GR[-1℄^4 GR[r4℄,

GI[r2℄^2 GR[-1℄^2 GR[r4℄, GI[r2℄^4 GR[r4℄, GR[-1℄^3 GR[r4℄^2,

GI[r2℄^2 GR[-1℄ GR[r4℄^2, GR[-1℄^2 GR[r4℄^3, GI[r2℄^2 GR[r4℄^3,

GR[-1℄ GR[r4℄^4, GR[r4℄^5, GI[r2℄ GI[0, r2℄ GR[-1℄^2,

GI[r2℄^3 GI[0, r2℄, GI[r2℄ GI[0, r2℄ GR[-1℄ GR[r4℄,

GI[r2℄ GI[0, r2℄ GR[r4℄^2, GI[0, r2℄^2 GR[-1℄, GI[0, r2℄^2 GR[r4℄,

GR[-1℄^3 GR[r2, -1℄, GI[r2℄^2 GR[-1℄ GR[r2, -1℄,

GR[-1℄^2 GR[r4℄ GR[r2, -1℄, GI[r2℄^2 GR[r4℄ GR[r2, -1℄,

GR[-1℄ GR[r4℄^2 GR[r2, -1℄, GR[r4℄^3 GR[r2, -1℄,

GI[r2℄ GI[0, r2℄ GR[r2, -1℄, GR[-1℄ GR[r2, -1℄^2,

GR[r4℄ GR[r2, -1℄^2, GR[-1℄^2 GR[0, 0, 1℄, GI[r2℄^2 GR[0, 0, 1℄,

GR[-1℄ GR[r4℄ GR[0, 0, 1℄, GR[r4℄^2 GR[0, 0, 1℄,

GR[r2, -1℄ GR[0, 0, 1℄, GI[r2℄ GI[0, 1, r4℄ GR[-1℄,

GI[r2℄ GI[0, 1, r4℄ GR[r4℄, GI[0, r2℄ GI[0, 1, r4℄,

GI[r2℄ GI[0, r2, -1℄ GR[-1℄, GI[r2℄ GI[0, r2, -1℄ GR[r4℄,

GI[0, r2℄ GI[0, r2, -1℄, GR[-1℄^2 GR[r2, 1, -1℄,

GI[r2℄^2 GR[r2, 1, -1℄, GR[-1℄ GR[r4℄ GR[r2, 1, -1℄,

GR[r4℄^2 GR[r2, 1, -1℄, GR[r2, -1℄ GR[r2, 1, -1℄,

GR[-1℄^2 GR[r2, 1, r3℄, GI[r2℄^2 GR[r2, 1, r3℄,

GR[-1℄ GR[r4℄ GR[r2, 1, r3℄, GR[r4℄^2 GR[r2, 1, r3℄,

GR[r2, -1℄ GR[r2, 1, r3℄, GI[r2℄ GI[0, 0, 0, r2℄,

GR[-1℄ GR[0, 0, r2, -1℄, GR[r4℄ GR[0, 0, r2, -1℄,

GR[-1℄ GR[0, 0, r4, 1℄, GR[r4℄ GR[0, 0, r4, 1℄,

GI[r2℄ GI[0, 1, 1, r4℄, GI[r2℄ GI[0, 1, r2, -1℄,

GI[r2℄ GI[0, 1, r2, r3℄, GI[r2℄ GI[0, r2, 1, -1℄,

GR[-1℄ GR[r2, 1, 1, -1℄, GR[r4℄ GR[r2, 1, 1, -1℄,

GR[-1℄ GR[r2, 1, 1, r3℄, GR[r4℄ GR[r2, 1, 1, r3℄,

GR[-1℄ GR[r2, 1, r2, -1℄, GR[r4℄ GR[r2, 1, r2, -1℄}
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Our example

B

I

(5) =

{GI[0, 0, 0, 1, r2℄, GI[0, 0, 0, 1, r4℄, GI[0, 0, 0, r2, -1℄,

GI[0, 1, 1, -1, r2℄, GI[0, 1, 1, -1, r4℄, GI[0, 1, 1, 1, r4℄,

GI[0, 1, 1, r2, r3℄, GI[0, 1, 1, r4, -1℄, GI[0, 1, 1, r4, r1℄,

GI[0, 1, r2, r3, r2℄, GI[0, r2, 1, 1, -1℄}

and

{GI[r2℄ GR[-1℄^4, GI[r2℄^3 GR[-1℄^2, GI[r2℄^5, GI[r2℄ GR[-1℄^3 GR[r4℄,

GI[r2℄^3 GR[-1℄ GR[r4℄, GI[r2℄ GR[-1℄^2 GR[r4℄^2, GI[r2℄^3 GR[r4℄^2,

GI[r2℄ GR[-1℄ GR[r4℄^3, GI[r2℄ GR[r4℄^4, GI[0, r2℄ GR[-1℄^3,

GI[r2℄^2 GI[0, r2℄ GR[-1℄, GI[0, r2℄ GR[-1℄^2 GR[r4℄,

GI[r2℄^2 GI[0, r2℄ GR[r4℄, GI[0, r2℄ GR[-1℄ GR[r4℄^2,

GI[0, r2℄ GR[r4℄^3, GI[r2℄ GI[0, r2℄^2, GI[r2℄ GR[-1℄^2 GR[r2, -1℄,

GI[r2℄^3 GR[r2, -1℄, GI[r2℄ GR[-1℄ GR[r4℄ GR[r2, -1℄,

GI[r2℄ GR[r4℄^2 GR[r2, -1℄, GI[0, r2℄ GR[-1℄ GR[r2, -1℄,

GI[0, r2℄ GR[r4℄ GR[r2, -1℄, GI[r2℄ GR[r2, -1℄^2,

GI[r2℄ GR[-1℄ GR[0, 0, 1℄, GI[r2℄ GR[r4℄ GR[0, 0, 1℄,

GI[0, r2℄ GR[0, 0, 1℄, GI[0, 1, r4℄ GR[-1℄^2, GI[r2℄^2 GI[0, 1, r4℄,

GI[0, 1, r4℄ GR[-1℄ GR[r4℄, GI[0, 1, r4℄ GR[r4℄^2,

GI[0, 1, r4℄ GR[r2, -1℄, GI[0, r2, -1℄ GR[-1℄^2,

GI[r2℄^2 GI[0, r2, -1℄, GI[0, r2, -1℄ GR[-1℄ GR[r4℄,

GI[0, r2, -1℄ GR[r4℄^2, GI[0, r2, -1℄ GR[r2, -1℄,

GI[r2℄ GR[-1℄ GR[r2, 1, -1℄, GI[r2℄ GR[r4℄ GR[r2, 1, -1℄,

GI[0, r2℄ GR[r2, 1, -1℄, GI[r2℄ GR[-1℄ GR[r2, 1, r3℄,

GI[r2℄ GR[r4℄ GR[r2, 1, r3℄, GI[0, r2℄ GR[r2, 1, r3℄,

GI[0, 0, 0, r2℄ GR[-1℄, GI[0, 0, 0, r2℄ GR[r4℄,

GI[r2℄ GR[0, 0, r2, -1℄, GI[r2℄ GR[0, 0, r4, 1℄,

GI[0, 1, 1, r4℄ GR[-1℄, GI[0, 1, 1, r4℄ GR[r4℄,

GI[0, 1, r2, -1℄ GR[-1℄, GI[0, 1, r2, -1℄ GR[r4℄,

GI[0, 1, r2, r3℄ GR[-1℄, GI[0, 1, r2, r3℄ GR[r4℄,

GI[0, r2, 1, -1℄ GR[-1℄, GI[0, r2, 1, -1℄ GR[r4℄,

GI[r2℄ GR[r2, 1, 1, -1℄, GI[r2℄ GR[r2, 1, 1, r3℄,

GI[r2℄ GR[r2, 1, r2, -1℄}
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In our ase, with additional
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B(w) = {B
R
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√
3B

I
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√
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√
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are `real'.

The numbers of elements are 3, 8, 21, 55, 144 for weights

w = 1, 2, 3, 4, 5, orrespondingly.
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In our ase, with additional

√
3, we use the bases

B(w) = {B
R

(w),
√
3B

I

(w)} of weights w = 1, 2, . . ..

The element

√
3 does not ontribute to the weight and it is

`imaginary' in its harater, so that elements from

√
3B

I

(w)
are `real'.

The numbers of elements are 3, 8, 21, 55, 144 for weights

w = 1, 2, 3, 4, 5, orrespondingly.

If a onstant is expeted to be uniformly transendental one

an use these bases. Otherwise, one uses

B̄(w) =

w

⋃

i=1

B(i) .
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Our example

In our ase, with additional

√
3, we use the bases

B(w) = {B
R

(w),
√
3B

I

(w)} of weights w = 1, 2, . . ..

The element

√
3 does not ontribute to the weight and it is

`imaginary' in its harater, so that elements from

√
3B

I

(w)
are `real'.

The numbers of elements are 3, 8, 21, 55, 144 for weights

w = 1, 2, 3, 4, 5, orrespondingly.

If a onstant is expeted to be uniformly transendental one

an use these bases. Otherwise, one uses

B̄(w) =

w

⋃

i=1

B(i) .

The numbers of elements in these bases are 4, 12, 33, 88, 232

for weights w = 1, 2, 3, 4, 5, orrespondingly.
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The auray of 2000 digits was quite enough to obtain results

with PSLQ in an ε-expansion up to the �nite part in ε, or, in
other words, up to weight 4, in a straightforward way.
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Our example

The auray of 2000 digits was quite enough to obtain results

with PSLQ in an ε-expansion up to the �nite part in ε, or, in
other words, up to weight 4, in a straightforward way.

Let us look for uniformly transendental threshold integrals.

At p

2 = m

2

, the integrals

{J
4

= F

1,2,2,2,2,0,...,0, J5 = F

2,2,2,2,1,0,...,0} .

are uniformly transendental. Let us assume that these

integrals at p

2 = 9m

2

also have this property. PSLQ with B(w)
on�rms it and gives
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Our example

J

4

=
1

ǫ

(

− 20

3

G

I

(r
2

)G
I

(0, r
2

)− 26

9

G

R

(0, 0, 1)

)

− 16G

I

(r
2

)G
R

(r
4

)G
I

(0, r
2

) + 124G

I

(r
2

)G
I

(0, 1, r
4

)

+ 72G

I

(r
2

)G
I

(0, r
2

,−1)

− 100

3

G

I

(0, r
2

)2 + 8G

R

(0, 0, r
4

, 1) +
1153G

I

(r
2

)4

15

+ O(ε) ,
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J

5

=

√

3G

I

(r
2

)

18ǫ3
+

1

ǫ2

(

5

9

√

3G

I

(0, r
2

) −
5

9

√

3G

I

(r
2

)G
R

(r
4

) −
√

3G

R

(−1)G
I

(r
2

)

)

+
1

ǫ

(

−

52

9

√

3G

R

(r
4

)G
I

(0, r
2

) − 10

√

3G

R

(−1)G
I

(0, r
2

) +
40

9

G

I

(r
2

)G
I

(0, r
2

) + 6

√

3G

I

(0, r
2

,−1)

+
26

3

√

3G

I

(0, 1, r
4

) +
52

27

G

R

(0, 0, 1) +
25

9

√

3G

I

(r
2

)G
R

(r
4

)
2

+ 10

√

3G

R

(−1)G
I

(r
2

)G
R

(r
4

)

+ 9

√

3G

R

(−1)
2

G

I

(r
2

) +
253

36

√

3G

I

(r
2

)
3

)

+
1060

27

√

3G

R

(r
4

)
2

G

I

(0, r
2

) +
32

3

G

I

(r
2

)G
R

(r
4

)G
I

(0, r
2

) − 60

√

3G

R

(r
4

)G
I

(0, r
2

,−1)

+ 104

√

3G

R

(−1)G
R

(r
4

)G
I

(0, r
2

) +
5101

324

√

3G

R

(0, 0, 1)G
I

(r
2

) + 90

√

3G

R

(−1)
2

G

I

(0, r
2

)

− 54

√

3G

R

(−1)G
I

(0, r
2

,−1) + 14

√

3G

I

(0, r
2

)G
R

(r
2

,−1) −
530

9

√

3G

R

(r
4

)G
I

(0, 1, r
4

)

− 96

√

3G

R

(−1)G
I

(0, 1, r
4

) − 60

√

3G

I

(0, 1, r
2

, r
3

) −
248

3

G

I

(r
2

)G
I

(0, 1, r
4

) +
5695

36

√

3G

I

(r
2

)
2

G

I

(0, r
2

)

−

7438

81

√

3G

I

(0, 0, 0, r
2

) − 48G

I

(r
2

)G
I

(0, r
2

,−1) +
200

9

G

I

(0, r
2

)
2

− 74

√

3G

I

(0, 1, r
2

,−1)

+ 54

√

3G

I

(0, r
2

, 1,−1) +
250

9

√

3G

I

(0, 1, 1, r
4

) −
16

3

G

R

(0, 0, r
4

, 1) −
1021

9

√

3G

I

(r
2

)
3

G

R

(r
4

)

−

250

27

√

3G

I

(r
2

)G
R

(r
4

)
3

− 50

√

3G

R

(−1)G
I

(r
2

)G
R

(r
4

)
2

− 90

√

3G

R

(−1)
2

G

I

(r
2

)G
R

(r
4

)

−

287

2

√

3G

R

(−1)G
I

(r
2

)
3

− 54

√

3G

R

(−1)
3

G

I

(r
2

) −
2306

45

G

I

(r
2

)
4

+ O(ε) .
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Our example

To evaluate the ε-term of J

1

let us onstrut the following

linear ombination:

J

6

=

(

1+
1

2

ǫ+
95

12

ǫ2 +
2615

144

ǫ3 +
1154333

1728

ǫ4
)

J

1

+48ǫJ
4

− 3024ǫ3J
5

.
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Our example

To evaluate the ε-term of J

1

let us onstrut the following

linear ombination:

J

6

=

(

1+
1

2

ǫ+
95

12

ǫ2 +
2615

144

ǫ3 +
1154333

1728

ǫ4
)

J

1

+48ǫJ
4

− 3024ǫ3J
5

.

The oe�ients here are adjusted in suh a way that the

available result up to the �nite part in ε is uniformly

transendental.

Moreover, analytial result for its ε-term an be revealed with

the help of the basis

B̃(5) = B(5) ∪
{

1,
√
3G

I

(r
2

),−20

3

G

I

(r
2

)G
I

(0, r
2

)− 26

9

G

R

(0, 0, 1)

}

whih di�ers from the uniformly transendental basis of weight

5 adding three elements proportional to the leading terms of

J

1

, J
5

, J
4

in their ε-expansions.
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Our example

J

1

= −

1

4ǫ4
+

1

8ǫ3
+

1

ǫ2

(

23

12

−

3G

I

(r
2

)2

4

)

+
1

ǫ

(

−

1

3

G

R

(0, 0, 1) +
3G

I

(r
2

)2

8

+
1493

576

)

− 120G

I

(r
2

)G
R

(r
4

)G
I

(0, r
2

) +
1941G

I

(r
2

)4

20

+
23G

I

(r
2

)2

4

+ 180G

I

(r
2

)G
I

(0, 1, r
4

) + 320G

I

(r
2

)

G

I

(0, r
2

) + 72G

R

(0, 0, r
4

, 1) +
833

6

G

R

(0, 0, 1) − 56

√

3π +
1024805

6912

+ ǫ

(

− 1056G

I

(r
2

)G
R

(r
4

)
2

G

I

(0, r
2

) − 2592G

R

(−1)G
I

(r
2

)G
I

(0, 1, r
4

) + 828G

I

(r
2

)G
R

(r
4

)G
I

(0, r
2

)

+ 1584G

I

(r
2

)G
R

(r
4

)G
I

(0, 1, r
4

) + 2592G

I

(r
2

)G
R

(r
4

)G
I

(0, r
2

,−1) −
15563

9

G

R

(0, 0, 1)G
I

(r
2

)
2

+ 1728G

I

(r
2

)G
I

(0, r
2

)G
R

(r
2

,−1) + 2592G

I

(r
2

)G
I

(0, 1, r
2

, r
3

) − 6042G

I

(r
2

)G
I

(0, 1, r
4

)

− 2880G

I

(r
2

)G
I

(0, 1, 1, r
4

) + 1704G

I

(0, r
2

)G
I

(0, 1, r
4

) −
72172

9

G

I

(r
2

)
3

G

I

(0, r
2

) +
320

9

G

I

(r
2

)G
I

(0, r
2

)

− 3456G

I

(r
2

)G
I

(0, r
2

,−1) +
14816

3

G

I

(r
2

)G
I

(0, 0, 0, r
2

) + 864G

I

(r
2

)G
I

(0, 1, r
2

,−1) + 1600G

I

(0, r
2

)
2

+ 1680

√

3G

I

(0, r
2

) + 1136G

R

(0, 0, 1, r
2

, r
4

) + 288G

R

(r
4

)G
R

(0, 0, r
4

, 1) − 420G

R

(0, 0, r
4

, 1)

− 288G

R

(0, 0, 1, 1, r
4

) +
485

27

G

R

(0, 0, 1) −
397811

405

G

R

(0, 0, 0, 0, 1) +
15396

5

G

I

(r
2

)
4

G

R

(r
4

)

− 1680

√

3G

I

(r
2

)G
R

(r
4

) + 1512G

R

(−1)G
I

(r
2

)
4

− 3024

√

3G

R

(−1)G
I

(r
2

) +
28000

9

√

3G

I

(r
2

)

−

29905G

I

(r
2

)4

8

+
1493G

I

(r
2

)2

192

+ 28

√

3π +
232538063

82944

)

+ O(ε
2

) .
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Our example

A similar proedure is applied to J

2

and J

3

.

Two linear ombinations

J

7

=

(

1+
1

3

ǫ+
37

9

ǫ2 +
571

108

ǫ3 +
139585

324

ǫ4
)

J

2

− 37ǫJ
4

+ 2112ǫ3J
5

,

J

8

=

(

1+ 8ǫ2 − 277

2

ǫ3 − 29551

12

ǫ4
)

J

3

+ 8(6ǫ− 1)J
4

+ 16(743ǫ+ 48)ǫ2J
5

.
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terms of values of harmoni polylogarithms at sixth roots of

unity

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄
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terms of values of harmoni polylogarithms at sixth roots of

unity

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄

ε2 terms of the ε-expansion (weight 6) using 20000 digits?
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Our example

One an also use smaller (by 20-25 perents) bases de�ned in

terms of values of harmoni polylogarithms at sixth roots of

unity

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄

ε2 terms of the ε-expansion (weight 6) using 20000 digits?

At least one more irreduible onstant is missing?
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know analytial results for the integrals we an obtain

analytial results for these integrals at singular points.
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Perspetives

Using an `ellipti' four-loop example of Feynman

integrals, we have demonstrated that although we don't

know analytial results for the integrals we an obtain

analytial results for these integrals at singular points.

Transporting simple information about the master

integrals at in�nity to other singular points.

Our algorithm works very e�etively and provides

high-preision numerial results, with a subsequent

suessful appliation of the PSLQ algorithm.

Other appliations of our algorithm are in progress.


