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L Motivations

Based on
It is a sequel of

an algorithm to find a solution of differential equations for
master integrals in the form of an e-expansion series with
numerical coefficients.

The algorithm is based on using generalized power series
expansions near singular points of the differential system,
solving difference equations for the corresponding coefficients
in these expansions and using matching to connect series
expansions at two neighbouring points.
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L Motivations

Typically, analytical results for Feynman integrals can be
expressed in terms of harmonic polylogarithms or multiple
polylogarithms which are very well mathematically studied
special functions introduced by physicists.

HPL, GiNaC

The possibility to arrive at a result written in terms of these
functions exists if one succeeds to turn to a so-called canonical
basis using rational transformations.

The e-form is not always possible. The simplest counter
example is the two-loop sunset diagram with three equal
non-zero masses. Elliptic functions and their generalizations
appear.
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L Motivations

Our approach [R. Lee, A. Smirnov & \V.5."17] is oriented at
situations where the e-form is not possible.

It is very natural to try to introduce new functions.

Elliptic generalization of multiple polylogarithms motivated by
two-loop examples, where the e-form is impossible

[L. Adams, C. Bogner, A. Schweitzer & S. Weinzierl'16;

E. Remiddi & L. Tancredi'17; M. Hidding & F. Moriello’17;

J. Broedel, C. Duhr, F. Dulat & L. Tancredi’17, J. Ablinger et
al.'17, J. Broedel, C. Duhr, F. Dulat, B. Penante &

L. Tancredi'18]
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L Motivations

Our approach is oriented at
situations where the e-form is not possible.

It is very natural to try to introduce new functions.

Elliptic generalization of multiple polylogarithms motivated by
two-loop examples, where the e-form is impossible

Still we are far, even in lower loops orders, from answering the
following question:

‘What is the class of functions which can appear in results for
Feynman integrals in situations where e-form is impossible’?



m Our setup

Q>



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar

L Motivations

m Our setup

m Our example: four-loop generalized sunset diagrams with
three massive and two massless propagators



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar

L Motivations

m Our setup

m Our example: four-loop generalized sunset diagrams with
three massive and two massless propagators

m Our goal: to use our algorithm and the corresponding
code for our example in order to obtain new analytical
results.



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar

L Motivations

m Our setup

m Our example: four-loop generalized sunset diagrams with
three massive and two massless propagators

m Our goal: to use our algorithm and the corresponding
code for our example in order to obtain new analytical
results.

We analytically evaluate the master integrals at threshold,
p?> = 9m?, in an expansion in € up to &'.



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar

L Motivations

m Our setup

m Our example: four-loop generalized sunset diagrams with
three massive and two massless propagators

m Our goal: to use our algorithm and the corresponding
code for our example in order to obtain new analytical
results.

We analytically evaluate the master integrals at threshold,
p?> = 9m?, in an expansion in € up to &'.

m Perspectives
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L our setup

Let us consider Feynman integrals with two scales and let x be
the ratio of these scales.

DE
Od =M (x,e)J,
where J = (U, . .., Jy) are N master integrals.

We imply that all the singular points of DE are regular, i.e. we
can reduce the DE to a local Fuchsian form at any singular
point, i.e. if x; is a singular point then

M (x) =

X — Xj

where A;(x) is regular at x = x; and A;(x;) # 0.



General solution

«O> (Fr «=

Q>
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L our setup

General solution
J(x)=U(x)C,

where C is a column of constants, and U is an evolution
operator

U(x) = Pexp {/M(x)dx}



Expanding in a vicinity of each singular point.
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Take x = 0.
The expansion is

ooKAl

U(X):ZXAZZHC(H—F)\,k)annkX,

AES n=0 k=0

where S is a finite set of powers of the form A = re with
integer r, K\ > 0 is an integer number corresponding to the
the maximal power of the logarithm.



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar

L our setup

Expanding in a vicinity of each singular point.
Take x = 0.
The expansion is

ooKAl

U(X):ZXAZZHC(H—F)\,k)annkX,

AES n=0 k=0

where S is a finite set of powers of the form A = re with
integer r, K\ > 0 is an integer number corresponding to the
the maximal power of the logarithm.

The goal is to determine S, K), and the matrix coefficients
C(n+X\k).
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Suppose that DE are in a global normalized Fuchsian form

M(x):@—i—z al

X

and for any k =0, ..., s the matrix A, is free of resonances,
i.e. the difference of any two of its distinct eigenvalues is not
integer.

In particular, the ‘elliptic’ cases, as a rule, can algorithmically
be reduced to a global normalized Fuchsian form using, e.g.,
the algorithm of Lee
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L our setup

DE — difference equations for the matrix coefficients
C(n+ X\ k).

Our algorithm provides solutions with no more than a linear
growth of computational complexity with respect to a required
number of terms.

This is very important for the subsequent step: the matching
procedure which enables one to connect series expansions at
two neighbouring points and thereby to obtain the possibility
to evaluate Feynman integrals at any given point.

Boundary conditions are included at one of the singular points
and then series expansions at other points can be obtained by
matching, step by step, pairs of expansions at neighboring
points.
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L our setup

Using series expansions at singular points and solving
difference equations:

(evaluating three-loop massive vacuum diagrams)

(applying general theory of DE for evaluating expansion of
two-scale integrals at a given singular point)

(evaluating expansions of solutions of DE at a given singular
point by difference equations)

(solving DE wrt 7 in propagators 1/(k? 4+ i0) — 1/(k* + in))
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Feynman integrals corresponding to the generalized sunset
graph with two massless and three massive lines

317 414 T

/ / d® k1 .dPky (ky - p)?e(ka - p)?7 (ks - p)? (ks - p)*
R ()R — Ry — K)es(m? — (K P
(k1 - kp)M0(ky - k3)?* (ky - ka)?2 (ko - k3)™2 (ko - ka)™*

with x = p?/m?.
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I—Our example

Feynman integrals corresponding to the generalized sunset
graph with two massless and three massive lines

317 414 T

/ / dPky ... dPky (ki - p)? (ko - p)?7 (ks - p)?e (ke - p)?
R () (m — Ry (e — KDy ( — (5 i + P
(k1 - kp)M0(ky - k3)?* (ky - ka)?2 (ko - k3)™2 (ko - ka)™*

with x = p?/m?.
There are four master integrals in this family. We choose

{F1,1,1,1,1,0,...,0, Fii2110,.05 F121,110,..0 F1,2,1,1,2,0,...,0}-



The singular points are

Xo=0,X1=1,X2=9,X3:X_1:OO
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The singular points are
X0:07X1:1,X2:9,X3:X_1:OO

The code DESS.m
https://bitbucket.org/feynmanintegrals/dess
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The singular points are
XOZO,X1:].,X2:9,X3:X_1:OO

The code DESS.m
https://bitbucket.org/feynmanintegrals/dess

Using this code it is possible to evaluate master integrals at a
given point as well as expansions at singular points with a
required precision in an e-expansion with a required number of
terms.
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I—Our example

The singular points are
XOZO,X1:].,X2:9,X3:X_1:OO

The code DESS.m
https://bitbucket.org/feynmanintegrals/dess

Using this code it is possible to evaluate master integrals at a
given point as well as expansions at singular points with a
required precision in an e-expansion with a required number of
terms.

The goal: to evaluate master integrals considered at threshold,
p2 — 9m2

{h=Fi110..0 »2=F2110..0 J3=F21110..0}


https://bitbucket.org/feynmanintegrals/dess

Choose a point to fix boundary conditions.
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x3 = 00: simple constants; it is also a neighbour of x, = 9.
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I—Our example

Choose a point to fix boundary conditions.

xo = 0: simple (leads to vacuum integrals with less indices)
It is far from x, = 9.

x; = 1: it is closer to x, = 0.

analytical results up to weight 7 can be taken from

x3 = 00: simple constants; it is also a neighbour of x, = 9.

The corresponding expansion is a large-momentum expansion

where every term is a product of
one-loop tadpoles and massless propagator integrals. It
provides any required accuracy and any required number of
terms in e-expansions in the boundary conditions.
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DESS[rdatas, x, f(x), oe, np, nt, ns]
where ns means the number of a singular point and this
number is 1 for xq, 2 for x;, and 4 for x.
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I—Our example

DESS[rdatas, x, f(x), oe, np, nt, ns]
where ns means the number of a singular point and this
number is 1 for xq, 2 for x;, and 4 for x.

We choose ns=4.

Using DESS we obtain numerical results for the threshold
master integrals in an e-expansion up to £2 with the accuracy
of 20000 digits for the corresponding coefficients.

Apply the PSLQ algorithm

FindIntegerNullVector in Mathematica



The choice of a basis of constants?
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Results for the two-loop sunset diagram at threshold

multiple polylogarithm values at sixth roots of unity up to
weight 3
and %
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I—Our example

The choice of a basis of constants?

Results for the two-loop sunset diagram at threshold
[F.A. Berends & A.l. Davydychev'97, A.l. Davydychev &
V.S."99]:

multiple polylogarithm values at sixth roots of unity up to
weight 3 [D.J. Broadhurst'98]

and el

[J. Fleischer & M.Y. Kalmykov'99, A.l. Davydychev &
M.Y. Kalmykov'00, M.Y. Kalmykov & B.A. Kniehl'10]:
include /3 separately.
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The choice of a basis of constants?

Results for the two-loop sunset diagram at threshold

multiple polylogarithm values at sixth roots of unity up to
weight 3
and %

include /3 separately.

Let us use multiple polylogarithm values at sixth roots of unity
constructed up to weight 6
and /3.



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar
I—Our example

G(ar,...,aw; 1),
where the indices a; are equal to zero or a sixth root of unity,
i.e. taken from the alphabet {0, ry, r3, —1,r4, 12,1} with

r1,2:%<1:|:\/§i> = A f3,4=%<—1i\/§i) a2

A=e"/3=pr and a, # 1.
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G(ar,...,aw; 1),
where the indices a; are equal to zero or a sixth root of unity,
i.e. taken from the alphabet {0, ry, r3, —1,r4, 12,1} with

r1,2:%<1:|:\/§i> — A f3,4=%<—1i\/§i) a2

A=e"/3=pr and a, # 1.

G(al,...,aw;z):/ L G(az,...,an; t)dt
0

t—a

with a;,z € C and G(z) = 1.



G(al,._

. aw:1) = G(ar,

-+ aw) +16Gi(ay,

., ay)

Hac
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G(a1,...,aw;1) = Gg(ay,...,aw) +1G(ay,...,an)

Let us denote by Bg(w) (Bj(w)) the bases generated by
GR(al, ey aW) (G,(al, RN aW)).
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I—Our example

G(a1,...,aw;1) = Gg(ay,...,aw) +1G(ay,...,an)

Let us denote by Bg(w) (Bj(w)) the bases generated by
GR(al, ey aW) (G,(al, RN aW)).

Be(1) = { Gel-1) =log(). Galr) = 3 lo5(3)}

™

B/(1) = {G,(rz):—g}.
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Br(2) =
{GR[IQ’ _1]:

GR[-11"2, GI[r2]~2, GR[-1] GRI[r4], GR[r4]l~2}
Bi(2) =

{GI[0, r2],

GI[r2] GR[-1], GI[r2] GR[r4l}

Br(3) =

{Gr[O, 0, 1], GR[r2, 1, -1], GR[r2, 1, r3],

GR[-1]1"3, GI[r2]~2 GR[-1], GR[-1]"2 GR[r4], GI[r2]~2 GR[r4],
GR[-1] GR[r4]-2, GR[r4]-3, GI[r2] GI[0O, r2], GR[-1] GR[r2, -1],
GR[r4] GR[r2, -11}

Bi(3) =

{GIfo, 1, r4l, GI[O, r2, -1],
GI[r2] GR[-1]1"2, GI[r2]~3, GI[r2] GR[-1] GR[r4], GI[r2]GR[r4]-2,
GI[0, r2] GR[-1], GI[O, r2] GR[r4], GI[r2] GR[r2, -11}
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Br(4) =

{Gr[0, 0, r2, -11, GR[O, O, r4, 11, GR[r2, 1, 1, -11,
GR[r2, 1, 1, r3], GR[r2, 1, r2, -11}

and

{GR[-11-4, GI[r2]1-2 GR[-11~2, GI[r2]1-4, GR[-11-3 GR[r4l,

GI[r2]1~2 GR[-1] GR[r4l, GR[-11-2 GR[r4l-2, GI[r2]~2 GR[r4l-2,
GR[-1] GR[r4]1~3, GR[r4]-~4, GI[r2] G6I[0, r2] GR[-1],

GI[r2] 6I[0, r2] GR[r4l, GI[0, r2]~2, GR[-1]1~2 GR[r2, -11,
GI[r2]~2 GR[r2, -1], GR[-1] GR[r4] GR[r2, -1], GR[r4]~2 GR[r2, -1],
GR[r2, -1]1-2, GR[-1] GR[0, 0, 1], GR[r4] GR[O, O, 1I,

GI[r2] ¢rfo, 1, r4l, GI[r2] GI[0, r2, -1], GR[-1] GR[r2, 1, -1],
GR[r4] GR[r2, 1, -1], GR[-1] GR[r2, 1, r3], GR[r4] GR[r2, 1, r3]}
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Bi(4) =

{61[o, 0, 0, r2], GI[0, 1, 1, r4l, GI[0, 1, r2, -11, GI[0, 1, r2, r3],
GIfo, r2, 1, -11}

and

{6I[r2] GR[-1]1-3, GI[r2]~3 GR[-1], GI[r2] GR[-11~2 GR[r4],

GI[r2]1~3 GR[r4l, GI[r2] GR[-1] GR[r4l1-2, GI[r2] GR[r4l1-3,

GI[0, r2] GR[-1]1-2, GI[r2]-~2 GI[0, r2], GI[0, r2] GR[-1] GR[r4l,
GI[0, r2] GR[r4]1-2, GI[r2] GR[-1] GR[r2, -11,

GI[r2] GR[r4] GR[r2, -1], GI[0, r2] GR[r2, -1], GI[r2] GR[O, O, 1],
6Ifo, 1, r4l GrR[-11, GI[0, 1, r4] GR[r4], GI[0, r2, -1] GR[-1],
GI[0, r2, -1] GR[r4]l, GI[r2] GR[r2, 1, -1], GI[r2] GR[r2, 1, r3]}



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar

I—Our example

BR(5) —

{er[0, 0, 0, 0, 11, GR[0, O, 1, 1, -1], GR[O, O, 1, 1, r4],
Grlo, 0, 1, r2, -11, GR[0, 0, 1, r2, r3], GR[O, O, 1, r2, r4l,
Grlo, 0, r2, 1, -11, GR[r2, 1, 1, -1, r2], GR[r2, 1, 1, 1, -1],
GR[r2, 1, 1, 1, r3], GR[r2, 1, 1, r2, -1], GR[r2, 1, 1, r2, r3],
GR[r2, 1, 1, r4, -11}

and

{GR[-11"5, GI[r2]~2 GR[-11"3, GI[r21~4 GR[-1], GR[-11-4 GR[r4l,
GI[r2]~2 GR[-11~2 GR[r4l, GI[r2]~4 GR[r4l, GR[-11-3 GR[r4l-2,
GI[r21~2 GR[-1] GR[r41~2, GR[-11-2 GR[r41"3, GI[r2]~2 GR[r4]1-3,
GR[-1]1 GR[r41-~4, GR[r4l~5, GI[r2] GI[0, r2] GR[-11-2,

GI[r21~3 GI[0, r2], GI[r2] GI[0, r2] GR[-1] GR[ral,

GI[r2] GI[0, r2] GR[r4l~2, GI[0, r21~2 GR[-1l, GI[0, r2]~2 GR[r4]l,
GR[-11"3 GR[r2, -1], GI[r2]1~2 GR[-1] GR[r2, -1],

GR[-11-2 GR[r4] GR[r2, -1, GI[r2]1~2 GR[r4] GR[r2, -1l,

GR[-1] GR[r4]1~2 GR[r2, -1], GR[r4]1-3 GR[r2, -1],

GI[r2] GI[0, r2] GR[r2, -1], GR[-1] GR[r2, -11-2,

GR[r4] GR[r2, -1]-2, GR[-1]1~2 GR[0, 0, 1], GI[r2]~2 GR[0, O, 1],
GR[-11 GR[r4] GR[0, 0, 11, GR[r4l-2 Gr[0, 0, 11,

GR[r2, -1] GR[0, 0, 11, GI[r2] GI[O, 1, r4] GR[-11,

GI[r2] GI[0, 1, r4] GR[r4l, GI[0, r2] GI[0, 1, r4l,

GI[r2] GI[0, r2, -1] GR[-1], GI[r2] GI[O, r2, -1] GR[r4l,
GIfo, r2l GIlo, r2, -11, GR[-11-2 GR[r2, 1, -11,

GI[r21~2 GR[r2, 1, -11, GR[-1] GR[r4] GR[r2, 1, -1,

GR[r4l1-2 GR[r2, 1, -11, GR[r2, -1] GR[r2, 1, -11,

GR[-11-2 GR[r2, 1, r3], GI[r2]~2 GR[r2, 1, r3l,

GR[-1]1 GR[r4] GR[r2, 1, r3], GR[r4]l-2 GR[r2, 1, r3],

GR[r2, -1] GR[r2, 1, r3], GI[r2] GI[0, O, O, r2],

GR[-1]1 GR[O, 0, r2, -1], GR[r4] GR[O, O, r2, -],

GR[-11 GR[O, O, r4, 1], GR[r4] GR[0, O, r4, 1,

GI[r2] GI[O, 1, 1, r4l, GI[r2] GI[O, 1, r2, -1],

GI[r2] GI[O, 1, r2, r3], GI[r2] GI[O, r2, 1, -1],

GR[-11 GR[r2, 1, 1, -11, GR[r4] GRIr2, 1, 1, -1,

GR[-1]1 GR[r2, 1, 1, r3], GR[r4] GRIr2, 1, 1, r3l,

GR[-11 GR[r2, 1, r2, -11, GR[r4l GRIr2, 1, r2, -11}



Evaluating ‘elliptic’ master integrals at special kinematic values:

I—Our example

Bi(5) =

{c1[o, o, 0, 1, r2], GI[0, O, O, 1, r4l, GI[O0, O, O, r2, -1l,
Grfo, t, 1, -1, r21, GIfo, 1, 1, -1, r4l, GIfo, 1, 1, 1, r4l,
GIfo, 1, 1, r2, r3l, GI[o, 1, t, r4, -11, GI[O, 1, 1, r4, ril,
GI[o, 1, r2, r3, r2l, GI[0, r2, 1, 1, -11}

and

{GI[r2] GR[-11~4, GI[r2]~3 GR[-11-2, GI[r2]1~5, GI[r2] GR[-11~3 GR[r4l,
GI[r2]~3 GR[-1] GR[r4], GI[r2] GR[-11-2 GR[r4]~2, GI[r2]~3 GR[r4]-2,
GI[r2] GR[-1] GR[r4]~3, GI[r2] GR[r4l-4, GI[0, r2] GR[-1]"3,

GI[r2]~2 GI[0, r2] GR[-1], GI[0, r2] GR[-1]~2 GR[r4l,

GI[r2]~2 GI[0, r2] GR[r4l, GI[0, r2] GR[-1] GR[r4l-2,

GI[0, r2] GR[r4l~3, GI[r2] GI[0, r2]~2, GI[r2] GR[-1]1~2 GR[r2, -1l,

GI[r2]~3 GR[r2, -1], GI[r2] GR[-1] GR[r4] GR[r2, -1I,

GI[r2] GR[r4l~2 GR[r2, -1l, GI[0, r2] GR[-1] GR[r2, -1I,

GI[0, r2] GR[r4l GR[r2, -11, GI[r2] GR[r2, -11-2,

GI[r2] GR[-1] GR[O, 0, 11, GI[r2] GR[r4l GR[O, 0, 1I,

GIfo, r2l GrRlo, 0, 11, GI[0, 1, r4] GR[-11~2, GI[r2]~2 GI[O, 1, r4l,

GIfo, 1, r4]l GR[-1] GR[r4l, GI[0, 1, r4l GR[r4l-2,

GIfo, 1, r4l GR[r2, -11, GI[0, r2, -11 GR[-11-2,

GI[r21~2 GI[0, r2, -11, GI[0, r2, -1 GR[-1] GR[r4l,

GIfo, r2, -11 GR[r4l-2, GI[0, r2, -11 GR[r2, -11,

GI[r2] GR[-1] GR[r2, 1, -1], GI[r2] GR[r4] GR[r2, 1, -1I,

GI[o, r2] GR[r2, 1, -1l, GI[r2] GR[-1] GR[r2, 1, r3l,

GI[r2] GR[r4] GR[r2, 1, r3], GI[0, r2] GR[r2, 1, r3],

G1lo, o, 0, r2] GR[-1], GI[0, 0, 0, r2] GR[r4l,

GI[r2] GR[0, 0, r2, -1], GI[r2] GR[O, O, r4, 1],

G1lo, 1, 1, r4l GR[-1], GI[0, 1, 1, r4] GR[r4l,

GIfo, t, r2, -11 GR[-11, GI[0, 1, r2, -1] GR[r4l,

GIfo, t, r2, r3l GR[-11, GI[0, 1, r2, r3] GR[r4l,

GIfo, r2, 1, -11 GR[-11, GI[0, r2, 1, -1] GR[r4l,

GI[r2] GR[r2, 1, 1, -11, GI[r2] GRIr2, 1, 1, r3l,

GI[r2] GR[r2, 1, r2, -11}

using differential equations and their solutions via

expar



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar

I—Our example

In our case, with additional /3, we use the bases
B(w) = {Bg(w), V3B;(w)} of weights w = 1,2, .. ..
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I—Our example

In our case, with additional v/3, we use the bases

B(w) = {Bg(w),V3B;(w)} of weights w = 1,2, .. ..

The element /3 does not contribute to the weight and it is
‘imaginary’ in its character, so that elements from v/3B;(w)

are ‘real’.
The numbers of elements are 3, 8,21, 55, 144 for weights
w=1,2,3,4,5, correspondingly.
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I—Our example

In our case, with additional /3, we use the bases
B(w) = {Bg(w), V3B;(w)} of weights w = 1,2, .. ..

The element /3 does not contribute to the weight and it is
‘imaginary’ in its character, so that elements from v/3B;(w)
are ‘real’.

The numbers of elements are 3, 8,21, 55, 144 for weights
w=1,2,3,4,5, correspondingly.

If a constant is expected to be uniformly transcendental one
can use these bases. Otherwise, one uses
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I—Our example

In our case, with additional /3, we use the bases
B(w) = {Bg(w), V3B;(w)} of weights w = 1,2, .. ..

The element /3 does not contribute to the weight and it is
‘imaginary’ in its character, so that elements from v/3B;(w)
are ‘real’.

The numbers of elements are 3, 8,21, 55, 144 for weights
w=1,2,3,4,5, correspondingly.

If a constant is expected to be uniformly transcendental one
can use these bases. Otherwise, one uses

The numbers of elements in these bases are 4, 12, 33, 88, 232
for weights w = 1,2, 3,4, 5, correspondingly.



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar

I—Our example

The accuracy of 2000 digits was quite enough to obtain results
with PSLQ in an e-expansion up to the finite part in &, or, in
other words, up to weight 4, in a straightforward way.
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I—Our example

The accuracy of 2000 digits was quite enough to obtain results
with PSLQ in an e-expansion up to the finite part in &, or, in
other words, up to weight 4, in a straightforward way.

Let us look for uniformly transcendental threshold integrals.

At p? = m?, the integrals

{Js = Fi22220,.0 Js = F222210,.0}-

are uniformly transcendental. Let us assume that these
integrals at p> = 9m? also have this property. PSLQ with B(w)
confirms it and gives



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar

I—Our example

— 16G/ r2 GR I’4)G/(O r2) + 124G,(r2)G,(0 )
+ 726/(/’2 G/(O rn, — )
100 1153G(r)*

— TG/(O r2) + SGR(O, 07 Iy, 1) + 15

= %(——G/ r2 G/ 0, rz)__GR(O 0, 1))
)
)

+ O(¢e),



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar

I—Our example

Gy(r:
b = B 1 (gﬂs,(o, r2) ~ 2 V3G1(r2)Gr(ra) — ﬂGR(—l)Gl(rz)>
1 52 40
+- ( - ?ﬁGR(fd)Gl(ox r2) — 10V/3GR(—1)G(0, r2) + ?GI(Q)GI(O-, r2) +6V36G,(0, r2, —1)

26 52 25
+ ?\/551(0, 1,ra) + ;GR(O» 0,1) + ?\/Ecl(rz)(ﬂr\*(m)2 +10V3GRr(—1)G/(r2)Gr(ra)

+9vV3Gr(—1)2G)(r2) + %ﬁc,(@’)

1060

2 VBGR()* G0, 12) + 2 G1(r2)GR(r4)Gi(0. r2) — 60V3GR ()G (0, r2, ~1)

5101
+104V3GR(~1)Gr(ra)G1(0, 72) + ——=V3GR(0,0,1)Gi (r2) + 90V3Gr(—1)>G(0, r2)
530
— 54V3GR(—1)Gy(0, r2, —1) + 14v/3G((0, r2)Gr(r2, —1) — T\/56,.-\.(“,)6,(0, 1,rq)

248 5695
—96V3GR(-1)G1(0,1,ra) = 60V3G1(0, 1,72, 13) — —=G1(r2)G1 (0,1, a) + Xﬁsl(rz)zcl(o, r2)
7438

200
~ 5y V361(0,0,0,12) — 48G;(r2)G1 (0, r2, ~1) + = =G (0, r2)? — 74V3G;(0,1, r2, —1)

250 16 1021
+54v3G;(0,r2,1, —1) + T‘/EGI(O-, 1,1,r4) — ?GR(O:O: ra,1) — T‘/EGI(’Z)BGR(M)
250
- ;ﬂs,(rz)GR(m)S — 50v/3GRr(—1)Gy(r2)Gr(ra)®> — 90V3Gr(—1)>G/(r2)Gr(ra)

~ 2 VBGR(-1)61(r2)* — 54VEGR(-1)%G1(r2) = “oo” Gi(r2)* + O() -



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar

I—Our example

To evaluate the e-term of J; let us construct the following
linear combination:
1 9 2615 1154333
— 1 - oY 2 3 4
Je < T TR T T Ti7os e)Jl
+48eJy — 302463 Js .
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I—Our example

To evaluate the e-term of J; let us construct the following
linear combination:
1 9 2615 1154333
— 1 - oY 2 3 4
Je < T TR T T Ti7os E)Jl
+48eJy — 302463 Js .

The coefficients here are adjusted in such a way that the
available result up to the finite part in ¢ is uniformly
transcendental.

Moreover, analytical result for its e-term can be revealed with
the help of the basis

B(5) = B(5) U {1, V3Gi(r), —23—06,(r2)G,(o, r) — 2—966R(0,0, 1)}

which differs from the uniformly transcendental basis of weight
5 adding three elements proportional to the leading terms of
Ji. J=. Ja in their e-expansions.



Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expar

I—Our example

- 1 . 1 N 1 /23  3Gi(r2)? . 1 Lo 0.0 1)+3G’(r2)2 N 1493
T 44 83 2\ 12 4 e 3 RET 8 576
1941G;(r2)*  23Gy(r2)?
— 120G (r2)GRr(ra)G(0, r2) + 20 + + 180G, (r2)Gy(0, 1, ra) + 320G, (r2)
833 1024805
Gi(0, r2) + 72GR(0,0, rg, 1) + TGR(o,o, 1) — 5637 + ooz

+ 6( — 1056G; (r2)Gr(ra)? Gy (0, r2) — 2592Gr(—1)G(r2)Gy(0, 1, ra) + 828G (r2) Gr(ra) Gy (0, r2)

15563

+1584G;(r2)GRr(ra)Gi(0, 1, ra) + 2592G;(r2)Gr(ra) Gy (0, r2, —1) — Gr(0,0,1)G(r2)?

+1728G;(r2)G(0, r2)GRr(r2, —1) + 2592G;(r2)Gy(0, 1, r2, r3) — 6042G;(r2)G;(0, 1, ra)
72172
9

320
—2880G(r2)Gy(0,1,1, ra) +1704G; (0, r2)G(0, 1, ra) — G(r2)>Gy(0, r2) + TGl(rz)Gl(O-, ra2)

14816
3
+ 1680v/3G;(0, r2) + 1136GR(0, 0,1, ra, rz) + 288GR(ra)GR(0,0, ra, 1) — 420GR(0, 0, ra, 1)

397811 15396 "
205 OR(0,0,0,0,1) + ——Gy(r2)"GRrlra)

—3456G;(r2)Gy(0, r2, —1) + G(r2)G1(0,0,0, r2) +864G(r2)G4(0, 1, r2, —1) + 1600G; (0, r2)*

485
— 288Gg(0,0,1,1,r3) + ;GR(O,O, 1) —

28

— 1680v/3G(r2)GRr(ra) + 1512Gr(—1)Gy(r2)* — 3024v/3GRr(—1)G(r2) + 200 V3G(r2)

20005G(r2)*  1493G(r2)? 232538063
1(r2) . 1(r2) 4 28vEn 4 + 02 .
8 192 82044
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I—Our example

A similar procedure is applied to J, and Js.
Two linear combinations

1 37 571 139585
J — 1 - >0 2 =3 oIy 4 J
! (JF36+96+108“r 324 )72
— 37edy + 211263 Js |

277 29551
Jg = (1 + 862 — 763 — T€4) J3

+ 8(6€ — 1)Js + 16(743€ + 48)® Js .
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I—Our example

One can also use smaller (by 20-25 percents) bases defined in
terms of values of harmonic polylogarithms at sixth roots of
unity
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I—Our example

One can also use smaller (by 20-25 percents) bases defined in
terms of values of harmonic polylogarithms at sixth roots of
unity

2 terms of the e-expansion (weight 6) using 20000 digits?
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I—Our example

One can also use smaller (by 20-25 percents) bases defined in
terms of values of harmonic polylogarithms at sixth roots of
unity

2 terms of the e-expansion (weight 6) using 20000 digits?

At least one more irreducible constant is missing?
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L Perspectives

m Using an ‘elliptic’ four-loop example of Feynman
integrals, we have demonstrated that although we don’t
know analytical results for the integrals we can obtain
analytical results for these integrals at singular points.
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L Perspectives

m Using an ‘elliptic’ four-loop example of Feynman
integrals, we have demonstrated that although we don’t
know analytical results for the integrals we can obtain
analytical results for these integrals at singular points.

m Transporting simple information about the master
integrals at infinity to other singular points.
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L Perspectives

m Using an ‘elliptic’ four-loop example of Feynman
integrals, we have demonstrated that although we don’t
know analytical results for the integrals we can obtain
analytical results for these integrals at singular points.

m Transporting simple information about the master
integrals at infinity to other singular points.

m Our algorithm works very effectively and provides
high-precision numerical results, with a subsequent
successful application of the PSLQ algorithm.
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L Perspectives

m Using an ‘elliptic’ four-loop example of Feynman
integrals, we have demonstrated that although we don’t
know analytical results for the integrals we can obtain
analytical results for these integrals at singular points.

m Transporting simple information about the master
integrals at infinity to other singular points.

m Our algorithm works very effectively and provides
high-precision numerical results, with a subsequent
successful application of the PSLQ algorithm.

m Other applications of our algorithm are in progress.



