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Based on [R. Lee, A. Smirnov & V.S., arXiv:1805.00227℄

It is a sequel of [R. Lee, A. Smirnov & V.S.'17℄:

an algorithm to �nd a solution of di�erential equations for

master integrals in the form of an ǫ-expansion series with

numeri
al 
oe�
ients.

The algorithm is based on using generalized power series

expansions near singular points of the di�erential system,

solving di�eren
e equations for the 
orresponding 
oe�
ients

in these expansions and using mat
hing to 
onne
t series

expansions at two neighbouring points.
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al results for Feynman integrals 
an be

expressed in terms of harmoni
 polylogarithms or multiple

polylogarithms whi
h are very well mathemati
ally studied

spe
ial fun
tions introdu
ed by physi
ists.

HPL, GiNaC

The possibility to arrive at a result written in terms of these

fun
tions exists if one su

eeds to turn to a so-
alled 
anoni
al

basis [J.M. Henn'13℄ using rational transformations.

The ε-form is not always possible. The simplest 
ounter

example is the two-loop sunset diagram with three equal

non-zero masses. Ellipti
 fun
tions and their generalizations

appear.
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Still we are far, even in lower loops orders, from answering the

following question:

`What is the 
lass of fun
tions whi
h 
an appear in results for

Feynman integrals in situations where ǫ-form is impossible'?
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Our setup

Our example: four-loop generalized sunset diagrams with

three massive and two massless propagators

Our goal: to use our algorithm and the 
orresponding


ode for our example in order to obtain new analyti
al

results.

We analyti
ally evaluate the master integrals at threshold,

p

2 = 9m

2

, in an expansion in ε up to ε1.

Perspe
tives



Evaluating `ellipti
' master integrals at spe
ial kinemati
 values: using di�erential equations and their solutions via expansions near singular points

Our setup

Let us 
onsider Feynman integrals with two s
ales and let x be

the ratio of these s
ales.



Evaluating `ellipti
' master integrals at spe
ial kinemati
 values: using di�erential equations and their solutions via expansions near singular points

Our setup

Let us 
onsider Feynman integrals with two s
ales and let x be

the ratio of these s
ales.

DE

∂
x

J = M (x , ε) J ,

where J = (J
1

, . . . , J
N

) are N master integrals.



Evaluating `ellipti
' master integrals at spe
ial kinemati
 values: using di�erential equations and their solutions via expansions near singular points

Our setup

Let us 
onsider Feynman integrals with two s
ales and let x be

the ratio of these s
ales.

DE

∂
x

J = M (x , ε) J ,

where J = (J
1

, . . . , J
N

) are N master integrals.

We imply that all the singular points of DE are regular, i.e. we


an redu
e the DE to a lo
al Fu
hsian form at any singular

point, i.e. if x

i

is a singular point then

M (x) =
A

i

(x)

x − x

i

where A

i

(x) is regular at x = x

i

and A

i

(x
i

) 6= 0.
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Our setup

General solution

J (x) = U (x)C ,

where C is a 
olumn of 
onstants, and U is an evolution

operator

U (x) = P exp

[
∫

M (x) dx

]

.
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Our setup

Expanding in a vi
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h singular point.

Take x = 0.

The expansion is

U (x) =
∑

λ∈S

x

λ

∞
∑

n=0

Kλ
∑

k=0

1

k!
C (n + λ, k) xn lnk x ,

where S is a �nite set of powers of the form λ = rǫ with
integer r , Kλ > 0 is an integer number 
orresponding to the

the maximal power of the logarithm.

The goal is to determine S , Kλ, and the matrix 
oe�
ients

C (n + λ, k).
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Our setup

Suppose that DE are in a global normalized Fu
hsian form

M (x) =
A

0

x

+

s

∑

k=1

A

k

x − x

k

and for any k = 0, . . . , s the matrix A

k

is free of resonan
es,

i.e. the di�eren
e of any two of its distin
t eigenvalues is not

integer.

In parti
ular, the `ellipti
' 
ases, as a rule, 
an algorithmi
ally

be redu
ed to a global normalized Fu
hsian form using, e.g.,

the algorithm of Lee [R.N. Lee'14℄.
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Our setup

DE → di�eren
e equations for the matrix 
oe�
ients

C (n + λ, k).

Our algorithm provides solutions with no more than a linear

growth of 
omputational 
omplexity with respe
t to a required

number of terms.

This is very important for the subsequent step: the mat
hing

pro
edure whi
h enables one to 
onne
t series expansions at

two neighbouring points and thereby to obtain the possibility

to evaluate Feynman integrals at any given point.

Boundary 
onditions are in
luded at one of the singular points

and then series expansions at other points 
an be obtained by

mat
hing, step by step, pairs of expansions at neighboring

points.
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di�eren
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[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄

(evaluating three-loop massive va
uum diagrams)

[R. Mueller & D. G.

�

Ozt�urk'16; J. M. Henn, A. V. Smirnov &

V. A. Smirnov'16℄

(applying general theory of DE for evaluating expansion of

two-s
ale integrals at a given singular point)

[K. Melnikov, L. Tan
redi and C. Wever'16℄

(evaluating expansions of solutions of DE at a given singular

point by di�eren
e equations)

[X. Liu, Y.Q. Ma & C.Y. Wang'17℄

(solving DE wrt η in propagators 1/(k2 + i0) → 1/(k2 + iη))
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There are four master integrals in this family. We 
hoose

{F
1,1,1,1,1,0,...,0, F1,1,2,1,1,0,...,0, F1,2,1,1,1,0,...,0, F1,2,1,1,2,0,...,0} .
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The singular points are
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= 0, x
1

= 1, x
2

= 9, x
3

= x−1

= ∞
The 
ode DESS.m
https://bitbu
ket.org/feynmanintegrals/dess

Using this 
ode it is possible to evaluate master integrals at a

given point as well as expansions at singular points with a

required pre
ision in an ǫ-expansion with a required number of

terms.

The goal: to evaluate master integrals 
onsidered at threshold,

p

2 = 9m

2

,

{J
1

= F

1,1,1,1,1,0,...,0, J2 = F

1,1,2,1,1,0,...,0, J3 = F

1,2,1,1,1,0,...,0} .

https://bitbucket.org/feynmanintegrals/dess
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Choose a point to �x boundary 
onditions.

x

0

= 0: simple (leads to va
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analyti
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M. Steinhauser'15℄

x

3

= ∞: simple 
onstants; it is also a neighbour of x

2

= 9.

The 
orresponding expansion is a large-momentum expansion

[K.G. Chetyrkin'88, V.S.'90℄ where every term is a produ
t of

one-loop tadpoles and massless propagator integrals. It

provides any required a

ura
y and any required number of

terms in ε-expansions in the boundary 
onditions.
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ients.
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[H.R.P. Ferguson, D.H. Bailey & S. Arno'99℄

FindIntegerNullVe
tor in Mathemati
a
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her & M.Y. Kalmykov'99, A.I. Davydy
hev &

M.Y. Kalmykov'00, M.Y. Kalmykov & B.A. Kniehl'10℄:
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√
3 separately.
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The 
hoi
e of a basis of 
onstants?

Results for the two-loop sunset diagram at threshold

[F.A. Berends & A.I. Davydy
hev'97, A.I. Davydy
hev &

V.S.'99℄:

multiple polylogarithm values at sixth roots of unity up to

weight 3 [D.J. Broadhurst'98℄

and

π√
3

.

[J. Fleis
her & M.Y. Kalmykov'99, A.I. Davydy
hev &

M.Y. Kalmykov'00, M.Y. Kalmykov & B.A. Kniehl'10℄:

in
lude

√
3 separately.

Let us use multiple polylogarithm values at sixth roots of unity


onstru
ted up to weight 6

[J.M. Henn, A.V. Smirnov & V.S.'17℄ and

√
3.
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1

, . . . , a
w

; 1),
where the indi
es a

i

are equal to zero or a sixth root of unity,

i.e. taken from the alphabet {0, r
1

, r
3

,−1, r
4

, r
2

, 1} with

r

1,2 =
1

2

(

1±
√
3 i

)

= λ±1 , r

3,4 =
1

2

(

−1±
√
3 i

)

= λ±2 ,

λ = e

πi/3 = r

1

and a

1

6= 1.
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1

, . . . , a
w

; 1),
where the indi
es a

i

are equal to zero or a sixth root of unity,

i.e. taken from the alphabet {0, r
1

, r
3

,−1, r
4

, r
2

, 1} with

r

1,2 =
1

2

(

1±
√
3 i

)

= λ±1 , r

3,4 =
1

2

(

−1±
√
3 i

)

= λ±2 ,

λ = e

πi/3 = r

1

and a

1

6= 1.

G (a
1

, . . . , a
w

; z) =

∫

z

0

1

t − a

1

G (a
2

, . . . , a
w

; t) dt

with a

i

, z ∈ C and G (z) = 1.

G (0, . . . , 0; z) =
1

n!
log

n

z .
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G (a
1

, . . . , a
w

; 1) = G

R

(a
1

, . . . , a
w

) + iG

I

(a
1

, . . . , a
w

)

Let us denote by B

R

(w) (B
I

(w)) the bases generated by

G

R

(a
1

, . . . , a
w

) (G
I

(a
1

, . . . , a
w

)).

[J.M. Henn, A.V. Smirnov & V.S.'17℄:

B

R

(1) =

{

G

R

(−1) = log(2), G

R

(r
4

) =
1

2

log(3)

}

,

B

I

(1) =
{

G

I

(r
2

) = −π

3

}

.
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B

R

(2) =

{GR[r2, -1℄,

GR[-1℄^2, GI[r2℄^2, GR[-1℄ GR[r4℄, GR[r4℄^2}

B

I

(2) =

{GI[0, r2℄,

GI[r2℄ GR[-1℄, GI[r2℄ GR[r4℄}

B

R

(3) =

{GR[0, 0, 1℄, GR[r2, 1, -1℄, GR[r2, 1, r3℄,

GR[-1℄^3, GI[r2℄^2 GR[-1℄, GR[-1℄^2 GR[r4℄, GI[r2℄^2 GR[r4℄,

GR[-1℄ GR[r4℄^2, GR[r4℄^3, GI[r2℄ GI[0, r2℄, GR[-1℄ GR[r2, -1℄,

GR[r4℄ GR[r2, -1℄}

B

I

(3) =

{GI[0, 1, r4℄, GI[0, r2, -1℄,

GI[r2℄ GR[-1℄^2, GI[r2℄^3, GI[r2℄ GR[-1℄ GR[r4℄, GI[r2℄GR[r4℄^2,

GI[0, r2℄ GR[-1℄, GI[0, r2℄ GR[r4℄, GI[r2℄ GR[r2, -1℄}
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B

R

(4) =

{GR[0, 0, r2, -1℄, GR[0, 0, r4, 1℄, GR[r2, 1, 1, -1℄,

GR[r2, 1, 1, r3℄, GR[r2, 1, r2, -1℄}

and

{GR[-1℄^4, GI[r2℄^2 GR[-1℄^2, GI[r2℄^4, GR[-1℄^3 GR[r4℄,

GI[r2℄^2 GR[-1℄ GR[r4℄, GR[-1℄^2 GR[r4℄^2, GI[r2℄^2 GR[r4℄^2,

GR[-1℄ GR[r4℄^3, GR[r4℄^4, GI[r2℄ GI[0, r2℄ GR[-1℄,

GI[r2℄ GI[0, r2℄ GR[r4℄, GI[0, r2℄^2, GR[-1℄^2 GR[r2, -1℄,

GI[r2℄^2 GR[r2, -1℄, GR[-1℄ GR[r4℄ GR[r2, -1℄, GR[r4℄^2 GR[r2, -1℄,

GR[r2, -1℄^2, GR[-1℄ GR[0, 0, 1℄, GR[r4℄ GR[0, 0, 1℄,

GI[r2℄ GI[0, 1, r4℄, GI[r2℄ GI[0, r2, -1℄, GR[-1℄ GR[r2, 1, -1℄,

GR[r4℄ GR[r2, 1, -1℄, GR[-1℄ GR[r2, 1, r3℄, GR[r4℄ GR[r2, 1, r3℄}



Evaluating `ellipti
' master integrals at spe
ial kinemati
 values: using di�erential equations and their solutions via expansions near singular points

Our example

B

I

(4) =

{GI[0, 0, 0, r2℄, GI[0, 1, 1, r4℄, GI[0, 1, r2, -1℄, GI[0, 1, r2, r3℄,

GI[0, r2, 1, -1℄}

and

{GI[r2℄ GR[-1℄^3, GI[r2℄^3 GR[-1℄, GI[r2℄ GR[-1℄^2 GR[r4℄,

GI[r2℄^3 GR[r4℄, GI[r2℄ GR[-1℄ GR[r4℄^2, GI[r2℄ GR[r4℄^3,

GI[0, r2℄ GR[-1℄^2, GI[r2℄^2 GI[0, r2℄, GI[0, r2℄ GR[-1℄ GR[r4℄,

GI[0, r2℄ GR[r4℄^2, GI[r2℄ GR[-1℄ GR[r2, -1℄,

GI[r2℄ GR[r4℄ GR[r2, -1℄, GI[0, r2℄ GR[r2, -1℄, GI[r2℄ GR[0, 0, 1℄,

GI[0, 1, r4℄ GR[-1℄, GI[0, 1, r4℄ GR[r4℄, GI[0, r2, -1℄ GR[-1℄,

GI[0, r2, -1℄ GR[r4℄, GI[r2℄ GR[r2, 1, -1℄, GI[r2℄ GR[r2, 1, r3℄}
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B

R

(5) =
{GR[0, 0, 0, 0, 1℄, GR[0, 0, 1, 1, -1℄, GR[0, 0, 1, 1, r4℄,

GR[0, 0, 1, r2, -1℄, GR[0, 0, 1, r2, r3℄, GR[0, 0, 1, r2, r4℄,

GR[0, 0, r2, 1, -1℄, GR[r2, 1, 1, -1, r2℄, GR[r2, 1, 1, 1, -1℄,

GR[r2, 1, 1, 1, r3℄, GR[r2, 1, 1, r2, -1℄, GR[r2, 1, 1, r2, r3℄,

GR[r2, 1, 1, r4, -1℄}

and

{GR[-1℄^5, GI[r2℄^2 GR[-1℄^3, GI[r2℄^4 GR[-1℄, GR[-1℄^4 GR[r4℄,

GI[r2℄^2 GR[-1℄^2 GR[r4℄, GI[r2℄^4 GR[r4℄, GR[-1℄^3 GR[r4℄^2,

GI[r2℄^2 GR[-1℄ GR[r4℄^2, GR[-1℄^2 GR[r4℄^3, GI[r2℄^2 GR[r4℄^3,

GR[-1℄ GR[r4℄^4, GR[r4℄^5, GI[r2℄ GI[0, r2℄ GR[-1℄^2,

GI[r2℄^3 GI[0, r2℄, GI[r2℄ GI[0, r2℄ GR[-1℄ GR[r4℄,

GI[r2℄ GI[0, r2℄ GR[r4℄^2, GI[0, r2℄^2 GR[-1℄, GI[0, r2℄^2 GR[r4℄,

GR[-1℄^3 GR[r2, -1℄, GI[r2℄^2 GR[-1℄ GR[r2, -1℄,

GR[-1℄^2 GR[r4℄ GR[r2, -1℄, GI[r2℄^2 GR[r4℄ GR[r2, -1℄,

GR[-1℄ GR[r4℄^2 GR[r2, -1℄, GR[r4℄^3 GR[r2, -1℄,

GI[r2℄ GI[0, r2℄ GR[r2, -1℄, GR[-1℄ GR[r2, -1℄^2,

GR[r4℄ GR[r2, -1℄^2, GR[-1℄^2 GR[0, 0, 1℄, GI[r2℄^2 GR[0, 0, 1℄,

GR[-1℄ GR[r4℄ GR[0, 0, 1℄, GR[r4℄^2 GR[0, 0, 1℄,

GR[r2, -1℄ GR[0, 0, 1℄, GI[r2℄ GI[0, 1, r4℄ GR[-1℄,

GI[r2℄ GI[0, 1, r4℄ GR[r4℄, GI[0, r2℄ GI[0, 1, r4℄,

GI[r2℄ GI[0, r2, -1℄ GR[-1℄, GI[r2℄ GI[0, r2, -1℄ GR[r4℄,

GI[0, r2℄ GI[0, r2, -1℄, GR[-1℄^2 GR[r2, 1, -1℄,

GI[r2℄^2 GR[r2, 1, -1℄, GR[-1℄ GR[r4℄ GR[r2, 1, -1℄,

GR[r4℄^2 GR[r2, 1, -1℄, GR[r2, -1℄ GR[r2, 1, -1℄,

GR[-1℄^2 GR[r2, 1, r3℄, GI[r2℄^2 GR[r2, 1, r3℄,

GR[-1℄ GR[r4℄ GR[r2, 1, r3℄, GR[r4℄^2 GR[r2, 1, r3℄,

GR[r2, -1℄ GR[r2, 1, r3℄, GI[r2℄ GI[0, 0, 0, r2℄,

GR[-1℄ GR[0, 0, r2, -1℄, GR[r4℄ GR[0, 0, r2, -1℄,

GR[-1℄ GR[0, 0, r4, 1℄, GR[r4℄ GR[0, 0, r4, 1℄,

GI[r2℄ GI[0, 1, 1, r4℄, GI[r2℄ GI[0, 1, r2, -1℄,

GI[r2℄ GI[0, 1, r2, r3℄, GI[r2℄ GI[0, r2, 1, -1℄,

GR[-1℄ GR[r2, 1, 1, -1℄, GR[r4℄ GR[r2, 1, 1, -1℄,

GR[-1℄ GR[r2, 1, 1, r3℄, GR[r4℄ GR[r2, 1, 1, r3℄,

GR[-1℄ GR[r2, 1, r2, -1℄, GR[r4℄ GR[r2, 1, r2, -1℄}
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B

I

(5) =

{GI[0, 0, 0, 1, r2℄, GI[0, 0, 0, 1, r4℄, GI[0, 0, 0, r2, -1℄,

GI[0, 1, 1, -1, r2℄, GI[0, 1, 1, -1, r4℄, GI[0, 1, 1, 1, r4℄,

GI[0, 1, 1, r2, r3℄, GI[0, 1, 1, r4, -1℄, GI[0, 1, 1, r4, r1℄,

GI[0, 1, r2, r3, r2℄, GI[0, r2, 1, 1, -1℄}

and

{GI[r2℄ GR[-1℄^4, GI[r2℄^3 GR[-1℄^2, GI[r2℄^5, GI[r2℄ GR[-1℄^3 GR[r4℄,

GI[r2℄^3 GR[-1℄ GR[r4℄, GI[r2℄ GR[-1℄^2 GR[r4℄^2, GI[r2℄^3 GR[r4℄^2,

GI[r2℄ GR[-1℄ GR[r4℄^3, GI[r2℄ GR[r4℄^4, GI[0, r2℄ GR[-1℄^3,

GI[r2℄^2 GI[0, r2℄ GR[-1℄, GI[0, r2℄ GR[-1℄^2 GR[r4℄,

GI[r2℄^2 GI[0, r2℄ GR[r4℄, GI[0, r2℄ GR[-1℄ GR[r4℄^2,

GI[0, r2℄ GR[r4℄^3, GI[r2℄ GI[0, r2℄^2, GI[r2℄ GR[-1℄^2 GR[r2, -1℄,

GI[r2℄^3 GR[r2, -1℄, GI[r2℄ GR[-1℄ GR[r4℄ GR[r2, -1℄,

GI[r2℄ GR[r4℄^2 GR[r2, -1℄, GI[0, r2℄ GR[-1℄ GR[r2, -1℄,

GI[0, r2℄ GR[r4℄ GR[r2, -1℄, GI[r2℄ GR[r2, -1℄^2,

GI[r2℄ GR[-1℄ GR[0, 0, 1℄, GI[r2℄ GR[r4℄ GR[0, 0, 1℄,

GI[0, r2℄ GR[0, 0, 1℄, GI[0, 1, r4℄ GR[-1℄^2, GI[r2℄^2 GI[0, 1, r4℄,

GI[0, 1, r4℄ GR[-1℄ GR[r4℄, GI[0, 1, r4℄ GR[r4℄^2,

GI[0, 1, r4℄ GR[r2, -1℄, GI[0, r2, -1℄ GR[-1℄^2,

GI[r2℄^2 GI[0, r2, -1℄, GI[0, r2, -1℄ GR[-1℄ GR[r4℄,

GI[0, r2, -1℄ GR[r4℄^2, GI[0, r2, -1℄ GR[r2, -1℄,

GI[r2℄ GR[-1℄ GR[r2, 1, -1℄, GI[r2℄ GR[r4℄ GR[r2, 1, -1℄,

GI[0, r2℄ GR[r2, 1, -1℄, GI[r2℄ GR[-1℄ GR[r2, 1, r3℄,

GI[r2℄ GR[r4℄ GR[r2, 1, r3℄, GI[0, r2℄ GR[r2, 1, r3℄,

GI[0, 0, 0, r2℄ GR[-1℄, GI[0, 0, 0, r2℄ GR[r4℄,

GI[r2℄ GR[0, 0, r2, -1℄, GI[r2℄ GR[0, 0, r4, 1℄,

GI[0, 1, 1, r4℄ GR[-1℄, GI[0, 1, 1, r4℄ GR[r4℄,

GI[0, 1, r2, -1℄ GR[-1℄, GI[0, 1, r2, -1℄ GR[r4℄,

GI[0, 1, r2, r3℄ GR[-1℄, GI[0, 1, r2, r3℄ GR[r4℄,

GI[0, r2, 1, -1℄ GR[-1℄, GI[0, r2, 1, -1℄ GR[r4℄,

GI[r2℄ GR[r2, 1, 1, -1℄, GI[r2℄ GR[r2, 1, 1, r3℄,

GI[r2℄ GR[r2, 1, r2, -1℄}
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In our 
ase, with additional

√
3, we use the bases

B(w) = {B
R

(w),
√
3B

I

(w)} of weights w = 1, 2, . . ..

The element

√
3 does not 
ontribute to the weight and it is

`imaginary' in its 
hara
ter, so that elements from

√
3B

I

(w)
are `real'.

The numbers of elements are 3, 8, 21, 55, 144 for weights

w = 1, 2, 3, 4, 5, 
orrespondingly.
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Our example

In our 
ase, with additional

√
3, we use the bases

B(w) = {B
R

(w),
√
3B

I

(w)} of weights w = 1, 2, . . ..

The element

√
3 does not 
ontribute to the weight and it is

`imaginary' in its 
hara
ter, so that elements from

√
3B

I

(w)
are `real'.

The numbers of elements are 3, 8, 21, 55, 144 for weights

w = 1, 2, 3, 4, 5, 
orrespondingly.

If a 
onstant is expe
ted to be uniformly trans
endental one


an use these bases. Otherwise, one uses

B̄(w) =

w

⋃

i=1

B(i) .
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Our example

In our 
ase, with additional

√
3, we use the bases

B(w) = {B
R

(w),
√
3B

I

(w)} of weights w = 1, 2, . . ..

The element

√
3 does not 
ontribute to the weight and it is

`imaginary' in its 
hara
ter, so that elements from

√
3B

I

(w)
are `real'.

The numbers of elements are 3, 8, 21, 55, 144 for weights

w = 1, 2, 3, 4, 5, 
orrespondingly.

If a 
onstant is expe
ted to be uniformly trans
endental one


an use these bases. Otherwise, one uses

B̄(w) =

w

⋃

i=1

B(i) .

The numbers of elements in these bases are 4, 12, 33, 88, 232

for weights w = 1, 2, 3, 4, 5, 
orrespondingly.
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The a

ura
y of 2000 digits was quite enough to obtain results

with PSLQ in an ε-expansion up to the �nite part in ε, or, in
other words, up to weight 4, in a straightforward way.
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Our example

The a

ura
y of 2000 digits was quite enough to obtain results

with PSLQ in an ε-expansion up to the �nite part in ε, or, in
other words, up to weight 4, in a straightforward way.

Let us look for uniformly trans
endental threshold integrals.

At p

2 = m

2

, the integrals

{J
4

= F

1,2,2,2,2,0,...,0, J5 = F

2,2,2,2,1,0,...,0} .

are uniformly trans
endental. Let us assume that these

integrals at p

2 = 9m

2

also have this property. PSLQ with B(w)

on�rms it and gives
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Our example

J

4

=
1

ǫ

(

− 20

3

G

I

(r
2

)G
I

(0, r
2

)− 26

9

G

R

(0, 0, 1)

)

− 16G

I

(r
2

)G
R

(r
4

)G
I

(0, r
2

) + 124G

I

(r
2

)G
I

(0, 1, r
4

)

+ 72G

I

(r
2

)G
I

(0, r
2

,−1)

− 100

3

G

I

(0, r
2

)2 + 8G

R

(0, 0, r
4

, 1) +
1153G

I

(r
2

)4

15

+ O(ε) ,
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J

5

=

√

3G

I

(r
2

)

18ǫ3
+

1

ǫ2

(

5

9

√

3G

I

(0, r
2

) −
5

9

√

3G

I

(r
2

)G
R

(r
4

) −
√

3G

R

(−1)G
I

(r
2

)

)

+
1

ǫ

(

−

52

9

√

3G

R

(r
4

)G
I

(0, r
2

) − 10

√

3G

R

(−1)G
I

(0, r
2

) +
40

9

G

I

(r
2

)G
I

(0, r
2

) + 6

√

3G

I

(0, r
2

,−1)

+
26

3

√

3G

I

(0, 1, r
4

) +
52

27

G

R

(0, 0, 1) +
25

9

√

3G

I

(r
2

)G
R

(r
4

)
2

+ 10

√

3G

R

(−1)G
I

(r
2

)G
R

(r
4

)

+ 9

√

3G

R

(−1)
2

G

I

(r
2

) +
253

36

√

3G

I

(r
2

)
3

)

+
1060

27

√

3G

R

(r
4

)
2

G

I

(0, r
2

) +
32

3

G

I

(r
2

)G
R

(r
4

)G
I

(0, r
2

) − 60

√

3G

R

(r
4

)G
I

(0, r
2

,−1)

+ 104

√

3G

R

(−1)G
R

(r
4

)G
I

(0, r
2

) +
5101

324

√

3G

R

(0, 0, 1)G
I

(r
2

) + 90

√

3G

R

(−1)
2

G

I

(0, r
2

)

− 54

√

3G

R

(−1)G
I

(0, r
2

,−1) + 14

√

3G

I

(0, r
2

)G
R

(r
2

,−1) −
530

9

√

3G

R

(r
4

)G
I

(0, 1, r
4

)

− 96

√

3G

R

(−1)G
I

(0, 1, r
4

) − 60

√

3G

I

(0, 1, r
2

, r
3

) −
248

3

G

I

(r
2

)G
I

(0, 1, r
4

) +
5695

36

√

3G

I

(r
2

)
2

G

I

(0, r
2

)

−

7438

81

√

3G

I

(0, 0, 0, r
2

) − 48G

I

(r
2

)G
I

(0, r
2

,−1) +
200

9

G

I

(0, r
2

)
2

− 74

√

3G

I

(0, 1, r
2

,−1)

+ 54

√

3G

I

(0, r
2

, 1,−1) +
250

9

√

3G

I

(0, 1, 1, r
4

) −
16

3

G

R

(0, 0, r
4

, 1) −
1021

9

√

3G

I

(r
2

)
3

G

R

(r
4

)

−

250

27

√

3G

I

(r
2

)G
R

(r
4

)
3

− 50

√

3G

R

(−1)G
I

(r
2

)G
R

(r
4

)
2

− 90

√

3G

R

(−1)
2

G

I

(r
2

)G
R

(r
4

)

−

287

2

√

3G

R

(−1)G
I

(r
2

)
3

− 54

√

3G

R

(−1)
3

G

I

(r
2

) −
2306

45

G

I

(r
2

)
4

+ O(ε) .
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Our example

To evaluate the ε-term of J

1

let us 
onstru
t the following

linear 
ombination:

J

6

=

(

1+
1

2

ǫ+
95

12

ǫ2 +
2615

144

ǫ3 +
1154333

1728

ǫ4
)

J

1

+48ǫJ
4

− 3024ǫ3J
5

.
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Our example

To evaluate the ε-term of J

1

let us 
onstru
t the following

linear 
ombination:

J

6

=

(

1+
1

2

ǫ+
95

12

ǫ2 +
2615

144

ǫ3 +
1154333

1728

ǫ4
)

J

1

+48ǫJ
4

− 3024ǫ3J
5

.

The 
oe�
ients here are adjusted in su
h a way that the

available result up to the �nite part in ε is uniformly

trans
endental.

Moreover, analyti
al result for its ε-term 
an be revealed with

the help of the basis

B̃(5) = B(5) ∪
{

1,
√
3G

I

(r
2

),−20

3

G

I

(r
2

)G
I

(0, r
2

)− 26

9

G

R

(0, 0, 1)

}

whi
h di�ers from the uniformly trans
endental basis of weight

5 adding three elements proportional to the leading terms of

J

1

, J
5

, J
4

in their ε-expansions.
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J

1

= −

1

4ǫ4
+

1

8ǫ3
+

1

ǫ2

(

23

12

−

3G

I

(r
2

)2

4

)

+
1

ǫ

(

−

1

3

G

R

(0, 0, 1) +
3G

I

(r
2

)2

8

+
1493

576

)

− 120G

I

(r
2

)G
R

(r
4

)G
I

(0, r
2

) +
1941G

I

(r
2

)4

20

+
23G

I

(r
2

)2

4

+ 180G

I

(r
2

)G
I

(0, 1, r
4

) + 320G

I

(r
2

)

G

I

(0, r
2

) + 72G

R

(0, 0, r
4

, 1) +
833

6

G

R

(0, 0, 1) − 56

√

3π +
1024805

6912

+ ǫ

(

− 1056G

I

(r
2

)G
R

(r
4

)
2

G

I

(0, r
2

) − 2592G

R

(−1)G
I

(r
2

)G
I

(0, 1, r
4

) + 828G

I

(r
2

)G
R

(r
4

)G
I

(0, r
2

)

+ 1584G

I

(r
2

)G
R

(r
4

)G
I

(0, 1, r
4

) + 2592G

I

(r
2

)G
R

(r
4

)G
I

(0, r
2

,−1) −
15563

9

G

R

(0, 0, 1)G
I

(r
2

)
2

+ 1728G

I

(r
2

)G
I

(0, r
2

)G
R

(r
2

,−1) + 2592G

I

(r
2

)G
I

(0, 1, r
2

, r
3

) − 6042G

I

(r
2

)G
I

(0, 1, r
4

)

− 2880G

I

(r
2

)G
I

(0, 1, 1, r
4

) + 1704G

I

(0, r
2

)G
I

(0, 1, r
4

) −
72172

9

G

I

(r
2

)
3

G

I

(0, r
2

) +
320

9

G

I

(r
2

)G
I

(0, r
2

)

− 3456G

I

(r
2

)G
I

(0, r
2

,−1) +
14816

3

G

I

(r
2

)G
I

(0, 0, 0, r
2

) + 864G

I

(r
2

)G
I

(0, 1, r
2

,−1) + 1600G

I

(0, r
2

)
2

+ 1680

√

3G

I

(0, r
2

) + 1136G

R

(0, 0, 1, r
2

, r
4

) + 288G

R

(r
4

)G
R

(0, 0, r
4

, 1) − 420G

R

(0, 0, r
4

, 1)

− 288G

R

(0, 0, 1, 1, r
4

) +
485

27

G

R

(0, 0, 1) −
397811

405

G

R

(0, 0, 0, 0, 1) +
15396

5

G

I

(r
2

)
4

G

R

(r
4

)

− 1680

√

3G

I

(r
2

)G
R

(r
4

) + 1512G

R

(−1)G
I

(r
2

)
4

− 3024

√

3G

R

(−1)G
I

(r
2

) +
28000

9

√

3G

I

(r
2

)

−

29905G

I

(r
2

)4

8

+
1493G

I

(r
2

)2

192

+ 28

√

3π +
232538063

82944

)

+ O(ε
2

) .
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Our example

A similar pro
edure is applied to J

2

and J

3

.

Two linear 
ombinations

J

7

=

(

1+
1

3

ǫ+
37

9

ǫ2 +
571

108

ǫ3 +
139585

324

ǫ4
)

J

2

− 37ǫJ
4

+ 2112ǫ3J
5

,

J

8

=

(

1+ 8ǫ2 − 277

2

ǫ3 − 29551

12

ǫ4
)

J

3

+ 8(6ǫ− 1)J
4

+ 16(743ǫ+ 48)ǫ2J
5

.
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Our example

One 
an also use smaller (by 20-25 per
ents) bases de�ned in

terms of values of harmoni
 polylogarithms at sixth roots of

unity

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄
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ε2 terms of the ε-expansion (weight 6) using 20000 digits?
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Our example

One 
an also use smaller (by 20-25 per
ents) bases de�ned in

terms of values of harmoni
 polylogarithms at sixth roots of

unity

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄

ε2 terms of the ε-expansion (weight 6) using 20000 digits?

At least one more irredu
ible 
onstant is missing?
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Perspe
tives

Using an `ellipti
' four-loop example of Feynman

integrals, we have demonstrated that although we don't

know analyti
al results for the integrals we 
an obtain

analyti
al results for these integrals at singular points.
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integrals at in�nity to other singular points.
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Our algorithm works very e�e
tively and provides

high-pre
ision numeri
al results, with a subsequent

su

essful appli
ation of the PSLQ algorithm.
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Perspe
tives

Using an `ellipti
' four-loop example of Feynman

integrals, we have demonstrated that although we don't

know analyti
al results for the integrals we 
an obtain

analyti
al results for these integrals at singular points.

Transporting simple information about the master

integrals at in�nity to other singular points.

Our algorithm works very e�e
tively and provides

high-pre
ision numeri
al results, with a subsequent

su

essful appli
ation of the PSLQ algorithm.

Other appli
ations of our algorithm are in progress.


