FORM course: lecture 1

Ben Ruijl

ETH Zurich
Jul 27, 2018

FORM

- FORM is a symbolic manipulation toolkit
- It supports basic algebraic operations, and can do them very fast
- Memory is no limitation, only disk space (no swapping)
- Terms are processed one-by-one
- Useful for HEP problems: often we have terabytes of terms!

Obtaining FORM

- Download FORM 4.2 from: https://github.com/vermaseren/form/releases
- Tutorial: https://www.nikhef.nl/~form/maindir/ documentation/tutorial/online/online.html
- Reference manual:
https://www.nikhef.nl/~form/maindir/ documentation/reference/online/online.html
- Compile:
./configure
make -j4
make install

Example program

Save the following as prog1.frm:
${ }_{1}$ Symbols a,b;
2 Local $\mathrm{F}=(\mathrm{a}+\mathrm{b})^{\wedge}$ 2;
${ }_{3}$ Print;
4 .end
and run
form prog1

Example program

```
1 Symbols a,b; * define symbols
2 Local F = (a+b)^2; * define expression
3 Print; * print the expression
4 .end; * end the program (and sort)
```

Time $=0.00 \mathrm{sec} \quad$Generated terms$=$	
F	Terms in output$=$
	Bytes used

$F=$
$b^{\wedge} 2+2 * a * b+a^{\wedge} 2 ;$

Example program

```
1 Symbols a,b; * define symbols
2 Local F = (a+b)^2; * define expression
3 Print; * print the expression
4 .end; * end the program (and sort)
Time = 0.00 sec Generated terms =
F Terms in output =
Bytes used = 108
F =
    b^2 + 2*a*b + a^2;
```


Operations on terms

Form can mutate terms with id:
1 Symbols a,b,c;
2 Local $\mathrm{F}=(\mathrm{a}+\mathrm{b})^{\wedge}$ 6;
3 id $\mathrm{a} \wedge 2 * \mathrm{~b}=\mathrm{c}$; * replacement
4 Print;
5 .end

Operations on terms

Form can mutate terms with id:

```
1 Symbols a,b,c;
2 Local F = (a+b)^6;
3 id a^2*b = c; * replacement
4 Print;
5 .end
F =
    15*c^2 + 15*b^3*c + b^6 + 20*a*b^2*c
    + 6*a*b^5 + 6*a^3*c + a^6;
```


FORM behaviour

- Form always expands terms
- Form processes expressions term by term
- This means that only 1 term should fit in memory, the rest can be read/written to disk
- Pro: memory is no limitation
- Con: operations on expressions are more difficult

When confused why certain operations don't exist, imagine that every expression is too big to fit in memory

The following FORM program will run (try it):
1 Auto Symbols x ; * all starting with x is a symbol
2 Local $\mathrm{F}=(\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 4+\mathrm{x} 5+\mathrm{x} 6)^{\wedge} 100$;
3 .end

$0.45 \mathrm{sec} \quad$ Generated terms $=$

Time $=$

1 Terms left =
Bytes used =
100000

6106364
$=$
$=$
$=12519468$

The following FORM program will run (try it):

```
1 Auto Symbols x; * all starting with }x\mathrm{ is a symbol
2 Local F = (x1+x2+x3+x4+x5+x6)^100;
3 .end
```

Time =
0.45 sec

Generated terms =
100000
F 1 Terms left $=100000$

Bytes used $=6106364$

1.00 sec	Generated terms	$=$	200000	
F	1 Terms left	$=$	200000	
		Bytes used		$=$
			12519468	

Term flow

Sorting

- At the end of a module, terms should be sorted to see if terms will merge
- A module is ended with . sort (or .end)
- Where to place the sort is up to the user

Sorting: good vs bad

```
1 Symbols a,b,c,d;
2 Local F = (a+b+c+1)^6;
3 id a = -c+d+1;
4 id b = -d+1;
5 Print;
6 .end
```

Generates 924 terms and has 1 in the output...

Sorting: good vs bad

```
1 Symbols a,b,c,d;
2 Local F = (a+b+c+1)^6;
3 id a = -c+d+1;
4 .sort
5 id b = -d+1;
6 .end
```

First sort:
Generated terms $=462$
Terms in output $=28$

Second sort:
Generated terms $=84$
Terms in output $=1$

Identity statements |

- Patterns for id statements can be any terms
- Use wildcards var? to match any object of the same type

```
1 S x,y; * short for Symbol
2 L F = x^2 + y;
3 id x? = 5; * match any symbol with x?
4 Print;
5 .end
yields
```

$$
F=30
$$

Identity statements II

Patterns can be more complicated:

```
1 S x,y,n;
2 L F = x^2 + y;
3 id x?^n? = x^ (n + 1);
4 Print;
5 .end
```

yields

$$
F=y^{\wedge} 2+x^{\wedge} 3
$$

Identity statements III

- Restrictions can be placed by a set $\{1, \ldots\}$ or a number range $\{>5\}$
- A statement can be repeated with repeat

```
1 S x,n;
2 L F = x^10;
3 repeat id x^n?{>1} = x^(n-1) + x^(n-2);
4 Print;
5 .end
yields
```

$$
F=34+55 * x ;
$$

Functions

- Functions for non-commutative functions
- CFunctions for commutative functions
${ }_{1}$ S a,b,c;
2 CF f; * short for CFunctions
${ }_{3}$ Local F = f(1,2,c);
${ }_{4}$ id $f(1,2, b ?)=f(1,2, b ?+1)$;
5 Print;
6 .end
yields:

$$
F=f(1,2, c+1) ;
$$

Ranged wildcards

A wildcard starting with a ? indicates a range:

```
1 S x;
2 L F = f(1, 2, x, 3, 4);
3 id f(?a,x,?b) = f(?b,?a);
4 Print;
5 .end
```

yields

$$
F=f(3,4,1,2) ;
$$

Applying statements to arguments

id-statements are only applied at ground-level:

```
1 S x,y;
2 L F = f(x*y);
3 id x = 5; * does not match
4 argument f;
5 id x = 6;
6 endargument;
7 Print;
8 .end
```

yields

$$
F=f(6 * y)
$$

If statements

```
1 S x,y;
2 L F = f(2) + f(5);
3 if (match(f(x?{>4})));
4 id f(x?) = f(x + 1);
5 else;
6 id f(x?) = f(x - 1);
7 endif;
8 Print;
9 . end
```

yields

$$
F=f(1)+f(6)
$$

Bracketing I

- Powers of variables can be extracted
- The terms are not nested for real, but information about brackets can be used in the next module

```
1 S x,y,z;
2 L F = x*y + x^2*y + x^2*z + 2;
3 Bracket x; * extract powers of x
4 Print;
5 .end
F = + x * ( y )
    + x^2 * ( z + y )
    + 2;
```


Bracketing II

- Brackets can be indexed in the next module

1 S x, y, z;
2 L F = x*y + x^2*y + x^2*z + 2;
${ }_{3}$ Bracket x;
4 .sort
${ }_{5} \mathrm{~L}$ G $=\mathrm{F}\left[\mathrm{x}^{\wedge} 2\right]$;
${ }_{6}$ Print G; * only print G
7 .end
$G=z+y$

Bracketing III

- Bracketed content can be collected in a function if it fits in memory

1 S x, y, z;
2 L F = x*y + $\mathrm{x}^{\wedge} 2 * \mathrm{y}+\mathrm{x}^{\wedge} 2 * \mathrm{z}+2$;
3 Bracket x;
4 .sort
${ }_{5}$ CF f;
${ }_{6}$ Collect f;
7 Print;
8 .end
$\mathrm{F}=\mathrm{f}(\mathrm{z}+\mathrm{y}) * \mathrm{x}^{\wedge} 2+\mathrm{f}(\mathrm{y}) * \mathrm{x}+\mathrm{f}(2)$

Vectors and indices

Contraction and Einstein summation:
${ }_{1}$ Index i1,i2,i3;
2 Vector p1,p2,p3;
${ }_{3}$ Local $\mathrm{F}=\mathrm{p} 1(\mathrm{i} 1) *(\mathrm{p} 2(\mathrm{i} 1)+\mathrm{p} 3(\mathrm{i} 3)) *(\mathrm{p} 1(\mathrm{i} 2)+\mathrm{p} 2(\mathrm{i} 3))$;
4 Print;
5 .end
yields:

$$
\begin{aligned}
\mathrm{F}= & \mathrm{p} 1(\mathrm{i} 1) * \mathrm{p} 1(\mathrm{i} 2) * \mathrm{p} 3(\mathrm{i} 3)+\mathrm{p} 1(\mathrm{i} 1) * \mathrm{p} 2 \cdot \mathrm{p} 3 \\
& +\mathrm{p} 1(\mathrm{i} 2) * \mathrm{p} 1 \cdot \mathrm{p} 2+\mathrm{p} 2(\mathrm{i} 3) * \mathrm{p} 1 \cdot \mathrm{p} 2 ;
\end{aligned}
$$

Make sure an index does not appear more than twice in a term!

Traces and gamma matrices

1 S D;
2 Index i1=D,i2=D; * D-dimensional indices
${ }^{3}$ Vector p1,p2;
${ }_{4}$ Local F1 = g_(1, i1, i1); * gamma matrices
${ }_{5}$ Local F2 = $g_{-}(1, \mathrm{p} 1, \mathrm{i} 2)$;
${ }_{6}$ Local F3 = $g_{-}(1, \mathrm{p} 1, \mathrm{p} 2)$;
7 tracen 1; * n-dimensional trace of spin line 1
8 Print;
9 .end

$$
\begin{aligned}
& \mathrm{F} 1=4 * \mathrm{D} ; \\
& \mathrm{F} 2=4 * \mathrm{p} 1(\mathrm{i} 2) ; \\
& \mathrm{F} 3=4 * \mathrm{p} 1 . \mathrm{p} 2 ;
\end{aligned}
$$

Feynman rule application

${ }_{1}$ S vhhg, gh, gl; * ghost-gluon vertex, ghost, gluon
${ }_{2}$ I i1,i2;
${ }_{3}$ V Q,p1,p2,p3,p4;
${ }_{4}$ CF vx,prop;
${ }_{5} L \operatorname{F}=\mathrm{vx}(\mathrm{Q}, \mathrm{p} 1, \mathrm{p} 2, \mathrm{i} 1, \mathrm{vhhg})$
$6 \quad * v x(-p 1,-Q,-p 2, i 2$, vhhg $)$
$7 \quad$ *prop(p1,i1,i2,gl)*prop(p2,gh);
8
9 id prop(p1?,i1?,i2?,gl) = d_(i1,i2)/p1.p1;
10 id prop(p1?,gh) = 1/p1.p1;
${ }_{11}$ id $\operatorname{vx}(\mathrm{p} 1 ?, \mathrm{p} 2 ?, \mathrm{p} 3 ?, \mathrm{i} 1 ?, \mathrm{vhhg})=-\mathrm{i}_{-} * \mathrm{vx}(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3) * \mathrm{p} 1(\mathrm{i} 1)$;
$\mathrm{F}=\mathrm{vx}(-\mathrm{p} 1,-\mathrm{Q},-\mathrm{p} 2) * \mathrm{vx}(\mathrm{Q}, \mathrm{p} 1, \mathrm{p} 2) * \mathrm{Q} \cdot \mathrm{p} 1 * \mathrm{p} 1 \cdot \mathrm{p} 1^{\wedge}-1 * \mathrm{p} 2 \cdot \mathrm{p} 2^{\wedge}-1 ;$

Exercises

- Write a program that can differentiate polynomials
- Write a program that expands $\ln (1-x)$ up to a certain power of x (see sum_ in manual)
- Substitute the expanded form of $x=1-e^{y}$ into the result
- Try to make the program faster for higher powers of x

