
1

Introduction
Tools for physicists

FORM course: lecture 1

Ben Ruijl

ETH Zurich

Jul 27, 2018

Ben Ruijl (benruyl@gmail.com) FORM course

2

Introduction
Tools for physicists

FORM

FORM is a symbolic manipulation toolkit

It supports basic algebraic operations, and can do them very
fast

Memory is no limitation, only disk space (no swapping)

Terms are processed one-by-one

Useful for HEP problems: often we have terabytes of terms!

Ben Ruijl (benruyl@gmail.com) FORM course

3

Introduction
Tools for physicists

Obtaining FORM

Download FORM 4.2 from:
https://github.com/vermaseren/form/releases

Tutorial: https://www.nikhef.nl/~form/maindir/

documentation/tutorial/online/online.html

Reference manual:
https://www.nikhef.nl/~form/maindir/

documentation/reference/online/online.html

Compile:

./configure

make -j4

make install

Ben Ruijl (benruyl@gmail.com) FORM course

https://github.com/vermaseren/form/releases
https://www.nikhef.nl/~form/maindir/documentation/tutorial/online/online.html
https://www.nikhef.nl/~form/maindir/documentation/tutorial/online/online.html
https://www.nikhef.nl/~form/maindir/documentation/reference/online/online.html
https://www.nikhef.nl/~form/maindir/documentation/reference/online/online.html

4

Introduction
Tools for physicists

Example program

Save the following as prog1.frm:

1 Symbols a,b;

2 Local F = (a+b)^2;

3 Print;

4 .end

and run

form prog1

Ben Ruijl (benruyl@gmail.com) FORM course

5

Introduction
Tools for physicists

Example program

1 Symbols a,b; * define symbols

2 Local F = (a+b)^2; * define expression

3 Print; * print the expression

4 .end; * end the program (and sort)

Time = 0.00 sec Generated terms = 3

F Terms in output = 3

Bytes used = 108

F =

b^2 + 2*a*b + a^2;

Ben Ruijl (benruyl@gmail.com) FORM course

5

Introduction
Tools for physicists

Example program

1 Symbols a,b; * define symbols

2 Local F = (a+b)^2; * define expression

3 Print; * print the expression

4 .end; * end the program (and sort)

Time = 0.00 sec Generated terms = 3

F Terms in output = 3

Bytes used = 108

F =

b^2 + 2*a*b + a^2;

Ben Ruijl (benruyl@gmail.com) FORM course

6

Introduction
Tools for physicists

Operations on terms

Form can mutate terms with id:

1 Symbols a,b,c;

2 Local F = (a+b)^6;

3 id a^2*b = c; * replacement

4 Print;

5 .end

F =

15*c^2 + 15*b^3*c + b^6 + 20*a*b^2*c

+ 6*a*b^5 + 6*a^3*c + a^6;

Ben Ruijl (benruyl@gmail.com) FORM course

6

Introduction
Tools for physicists

Operations on terms

Form can mutate terms with id:

1 Symbols a,b,c;

2 Local F = (a+b)^6;

3 id a^2*b = c; * replacement

4 Print;

5 .end

F =

15*c^2 + 15*b^3*c + b^6 + 20*a*b^2*c

+ 6*a*b^5 + 6*a^3*c + a^6;

Ben Ruijl (benruyl@gmail.com) FORM course

7

Introduction
Tools for physicists

FORM behaviour

Form always expands terms

Form processes expressions term by term

This means that only 1 term should fit in memory, the rest
can be read/written to disk

Pro: memory is no limitation

Con: operations on expressions are more difficult

When confused why certain operations don’t exist, imagine that
every expression is too big to fit in memory

Ben Ruijl (benruyl@gmail.com) FORM course

8

Introduction
Tools for physicists

The following FORM program will run (try it):

1 Auto Symbols x; * all starting with x is a symbol

2 Local F = (x1+x2+x3+x4+x5+x6)^100;

3 .end

Time = 0.45 sec Generated terms = 100000

F 1 Terms left = 100000

Bytes used = 6106364

Time = 1.00 sec Generated terms = 200000

F 1 Terms left = 200000

Bytes used = 12519468

....

Ben Ruijl (benruyl@gmail.com) FORM course

8

Introduction
Tools for physicists

The following FORM program will run (try it):

1 Auto Symbols x; * all starting with x is a symbol

2 Local F = (x1+x2+x3+x4+x5+x6)^100;

3 .end

Time = 0.45 sec Generated terms = 100000

F 1 Terms left = 100000

Bytes used = 6106364

Time = 1.00 sec Generated terms = 200000

F 1 Terms left = 200000

Bytes used = 12519468

....

Ben Ruijl (benruyl@gmail.com) FORM course

9

Introduction
Tools for physicists

Term flow

Ben Ruijl (benruyl@gmail.com) FORM course

10

Introduction
Tools for physicists

Sorting

At the end of a module, terms should be sorted to see if terms
will merge

A module is ended with .sort (or .end)

Where to place the sort is up to the user

Ben Ruijl (benruyl@gmail.com) FORM course

11

Introduction
Tools for physicists

Sorting: good vs bad

1 Symbols a,b,c,d;

2 Local F = (a+b+c+1)^6;

3 id a = -c+d+1;

4 id b = -d+1;

5 Print;

6 .end

Generates 924 terms and has 1 in the output...

Ben Ruijl (benruyl@gmail.com) FORM course

12

Introduction
Tools for physicists

Sorting: good vs bad

1 Symbols a,b,c,d;

2 Local F = (a+b+c+1)^6;

3 id a = -c+d+1;

4 .sort

5 id b = -d+1;

6 .end

First sort:

Generated terms = 462

Terms in output = 28

Second sort:

Generated terms = 84

Terms in output = 1

Ben Ruijl (benruyl@gmail.com) FORM course

13

Introduction
Tools for physicists

Identity statements I

Patterns for id statements can be any terms

Use wildcards var? to match any object of the same type

1 S x,y; * short for Symbol

2 L F = x^2 + y;

3 id x? = 5; * match any symbol with x?

4 Print;

5 .end

yields

F = 30

Ben Ruijl (benruyl@gmail.com) FORM course

14

Introduction
Tools for physicists

Identity statements II

Patterns can be more complicated:

1 S x,y,n;

2 L F = x^2 + y;

3 id x?^n? = x^(n + 1);

4 Print;

5 .end

yields

F = y^2 + x^3

Ben Ruijl (benruyl@gmail.com) FORM course

15

Introduction
Tools for physicists

Identity statements III

Restrictions can be placed by a set {1,..} or a number range
{>5}

A statement can be repeated with repeat

1 S x,n;

2 L F = x^10;

3 repeat id x^n?{>1} = x^(n-1) + x^(n-2);

4 Print;

5 .end

yields

F = 34 + 55*x;

Ben Ruijl (benruyl@gmail.com) FORM course

16

Introduction
Tools for physicists

Functions

Functions for non-commutative functions

CFunctions for commutative functions

1 S a,b,c;

2 CF f; * short for CFunctions

3 Local F = f(1,2,c);

4 id f(1,2,b?) = f(1,2,b?+1);

5 Print;

6 .end

yields:

F = f(1,2,c+1);

Ben Ruijl (benruyl@gmail.com) FORM course

17

Introduction
Tools for physicists

Ranged wildcards

A wildcard starting with a ? indicates a range:

1 S x;

2 L F = f(1,2,x,3,4);

3 id f(?a,x,?b) = f(?b,?a);

4 Print;

5 .end

yields

F = f(3,4,1,2);

Ben Ruijl (benruyl@gmail.com) FORM course

18

Introduction
Tools for physicists

Applying statements to arguments

id-statements are only applied at ground-level:

1 S x,y;

2 L F = f(x*y);

3 id x = 5; * does not match

4 argument f;

5 id x = 6;

6 endargument;

7 Print;

8 .end

yields

F = f(6*y)

Ben Ruijl (benruyl@gmail.com) FORM course

19

Introduction
Tools for physicists

If statements

1 S x,y;

2 L F = f(2) + f(5);

3 if (match(f(x?{>4})));

4 id f(x?) = f(x + 1);

5 else;

6 id f(x?) = f(x - 1);

7 endif;

8 Print;

9 .end

yields

F = f(1) + f(6)

Ben Ruijl (benruyl@gmail.com) FORM course

20

Introduction
Tools for physicists

Bracketing I

Powers of variables can be extracted

The terms are not nested for real, but information about
brackets can be used in the next module

1 S x,y,z;

2 L F = x*y + x^2*y + x^2*z + 2;

3 Bracket x; * extract powers of x

4 Print;

5 .end

F = + x * (y)

+ x^2 * (z + y)

+ 2;

Ben Ruijl (benruyl@gmail.com) FORM course

21

Introduction
Tools for physicists

Bracketing II

Brackets can be indexed in the next module

1 S x,y,z;

2 L F = x*y + x^2*y + x^2*z + 2;

3 Bracket x;

4 .sort

5 L G = F[x^2];

6 Print G; * only print G

7 .end

G = z + y

Ben Ruijl (benruyl@gmail.com) FORM course

22

Introduction
Tools for physicists

Bracketing III

Bracketed content can be collected in a function if it fits in
memory

1 S x,y,z;

2 L F = x*y + x^2*y + x^2*z + 2;

3 Bracket x;

4 .sort

5 CF f;

6 Collect f;

7 Print;

8 .end

F = f(z + y)*x^2 + f(y)*x + f(2)

Ben Ruijl (benruyl@gmail.com) FORM course

23

Introduction
Tools for physicists

Vectors and indices

Contraction and Einstein summation:

1 Index i1,i2,i3;

2 Vector p1,p2,p3;

3 Local F = p1(i1)*(p2(i1)+p3(i3))*(p1(i2)+p2(i3));

4 Print;

5 .end

yields:

F = p1(i1)*p1(i2)*p3(i3) + p1(i1)*p2.p3

+ p1(i2)*p1.p2 + p2(i3)*p1.p2;

Make sure an index does not appear more than twice in a term!

Ben Ruijl (benruyl@gmail.com) FORM course

24

Introduction
Tools for physicists

Traces and gamma matrices

1 S D;

2 Index i1=D,i2=D; * D-dimensional indices

3 Vector p1,p2;

4 Local F1 = g_(1, i1, i1); * gamma matrices

5 Local F2 = g_(1, p1, i2);

6 Local F3 = g_(1, p1, p2);

7 tracen 1; * n-dimensional trace of spin line 1

8 Print;

9 .end

F1 = 4*D;

F2 = 4*p1(i2);

F3 = 4*p1.p2;

Ben Ruijl (benruyl@gmail.com) FORM course

25

Introduction
Tools for physicists

Feynman rule application

1 S vhhg, gh, gl; * ghost-gluon vertex, ghost, gluon

2 I i1,i2;

3 V Q,p1,p2,p3,p4;

4 CF vx,prop;

5 L F = vx(Q,p1,p2,i1,vhhg)

6 *vx(-p1,-Q,-p2,i2,vhhg)

7 *prop(p1,i1,i2,gl)*prop(p2,gh);

8

9 id prop(p1?,i1?,i2?,gl) = d_(i1,i2)/p1.p1;

10 id prop(p1?,gh) = 1/p1.p1;

11 id vx(p1?,p2?,p3?,i1?,vhhg) = -i_*vx(p1,p2,p3)*p1(i1);

F = vx(-p1,-Q,-p2)*vx(Q,p1,p2)*Q.p1*p1.p1^-1*p2.p2^-1;

Ben Ruijl (benruyl@gmail.com) FORM course

26

Introduction
Tools for physicists

Exercises

Write a program that can differentiate polynomials

Write a program that expands ln(1 − x) up to a certain power
of x (see sum_ in manual)

Substitute the expanded form of x = 1 − ey into the result

Try to make the program faster for higher powers of x

Ben Ruijl (benruyl@gmail.com) FORM course

	Introduction
	Tools for physicists

