Nuclear modification factor of inclusive charged particles in Au+Au collisions at $\sqrt{s_{NN}} = 27$ GeV with the STAR experiment. Supported in part by

Alisher Aitbayev^{1,2,3} (for the STAR collaboration) ¹Joint Institute for Nuclear Research, Dubna - Russia, ²The Institute of Nuclear Physics, Almaty - Kazakhstan ³Al-Farabi Kazakh National University, Almaty - Kazakhstan

Abstract

The Quantum ChromoDynamics (QCD) phase diagram, often represented using coordinates of temperature (T) and baryonic chemical potential (μ_B), includes a transition from a hadronic gas phase to a quark-gluon plasma (QGP) phase. The Beam Energy Scan (BES) program at Relativistic Heavy Ion Collider (RHIC) varies the gold-gold collision energy aiming to explore the phase diagram and pinpoint the critical point. BES's initial phase (2010-2014) revealed intriguing results, including the suppression of high transverse momentum particle production ($p_T > 2 \text{ GeV/c}$) at collision energies from $\sqrt{s_{NN}} = 62.4$ to 200 GeV that is quantified by the nuclear modification factor (R_{CP}). In 2018, STAR at RHIC collected a large-statistics dataset at $\sqrt{s_{NN}} = 27$ GeV, ten times larger than BES-I. This poster introduces new BES-II measurements of inclusive charged particles at 27 GeV, extending BES-I findings across a wider transverse momentum range with better precision. The relevant physics implications including the potential jet quenching effects

at low energy collisions will also be discussed.

Introduction

QCD Phase Diagram

- ℜ Cross-over transition expected at low baryon chemical potential (μ_β)
- First-order transition expected at high μ_B
- ✤ Critical point is the end point of the first order phase transition

Figure 1: Dependence of the nuclear modification factor on the transverse momentum of produced particles (BES-I)

The suppression effect of charged particle production with high transverse momenta ($p_T > 2 \text{ GeV/c}$) is one of the most interesting results

Motivation

partonic matter and was predicted as a sign of the formation of the QGP phase, where simple model of hadron scattering cannot describe the observations. This effect can be quantified using the nuclear modification factor R_{CP} :

• Nuclear modification factor:

- Beam Energy Scan (BES)
 - Explore the QCD matter by colliding gold ions at different energies - and search for the potential QCD critical point
 - Seeking to map onset of deconfinement, and the predicted QCD critical point

Results 1

The transverse momentum particle spectra for Au+Au collisions at energy of $\sqrt{s_{NN}} = 27$ GeV for inclusive charged particles in different centrality classes are shown in figure 3.

observed at the Solenoidal Tracker At RHIC (STAR) experiment during the BES-I program. This effect has been interpreted as the increase in energy loss of partons in the quark-gluon plasma produced at high energy heavy ion-collisions. It is commonly referred to as jet quenching in dense

Figure 2: Comparison of statistics between BES-I (2010-2017) and BES-II (2019-2021)

Results 2

Figure 4: R_{CP} for inclusive charged particles at $\sqrt{s_{NN}} = 27$ GeV collision energy. The error band at unity on the right side of the plot corresponds to the p_T independent uncertainty on N_{bin} scaling. The vertical error bars correspond to statistical uncertainties and the colored boxes to the point-to-point systematic uncertainties.

$$R_{CP} = \frac{\langle N_{coll} \rangle_{Peripheral}}{\langle N_{coll} \rangle_{Central}} \frac{d^2 N / dp_T d\eta_{0-5\%}}{d^2 N / dp_T d\eta_{60-80\%}}$$
(2)

 $10^{-7} = STAR Preliminary$ $10^{-9} = 12 3 4 5 6 7 8 9$ $p_{T} (GeV/c)$

Figure 3: Transverse momentum distribution of inclusive charged particles for collision energy of 27 GeV.Each spectrum corresponds to a certain centrality class and is multiplied by coefficient from $1 - 10^5$ for visibility. The vertical error bars correspond to statistical uncertainties and the colored boxes to the systematic uncertainties.

From figure 3, it can be noticed that in the BES-II program, the spectra have a greater coverage in terms of transverse momentum p_T for all centrality classes, which enables a more comprehensive investigation of the nuclear modification factor. The growth of R_{CP} is seen at low values of p_T (up to $p_T \approx 2 \text{ GeV/c}$), which is affected by effects such as Cronin enhancement, radial flow, and the relative dominance of coalescence over fragmentation during hadronization. However, as p_T increases, R_{CP} reaches a plateau and then demonstrates suppression of hadrons produced in central collisions with respect to peripheral collisions.

Conclusion

New data from the BES-II allow to extend investigation of the particle production modification in medium to the region of high transverse momenta p_T . First measurement of the nuclear modification factor R_{CP} at the collision energy of 27 GeV has shown a behavior similar to what was previously obtained at higher energies with a plateau and a decries at transverse momenta $p_T > 2$ GeV/c. An energy dependent study of the R_{CP} on data from BES-II should allow to better map the position of the phase transition from hadronic to partonic degrees of freedom in nuclear matter. Acknowledgments: Supported by Russian Science Foundation under grant N 22-72-10028.