# **Explaining B-physics anomalies by a non-universal** Z'**-boson**

[2105.05754]

Belle II (63 fb<sup>-1</sup>, Inclusive

Belle (711  $fb^{-1}$ , SL) 1.0  $\pm$  0.6 PRD96, 091101

6

 $BR(B^+ \to K^+ \nu \bar{\nu}) \times 10^5$ 

Exp<sub>avg</sub> =  $(1.1 \pm 0.4) \times 10^{-5}$ SM =  $(4.6 \pm 0.5) \times 10^{-6}$  $R_{K}^{\nu} = 2.4 \pm 0.9$ 

Belle (711  $fb^{-1}$ , Had) 3.0  $\pm$  1.6 PRD87, 111103

Babar (429 fb<sup>-1</sup>, Had+SL)  $_{0.8\pm0.7}$  PRD87, 112005

8

# **Bednyakov Alexander & Mukhaeva Alfiia** JINR, BLTP

bednya@jinr.ru, mukhaeva@theor.jinr.ru

### Abstract

We perform a study [Phys.Rev.D 107 (2023) 11, 115033] of the new physics effects in semileptonic FCNC processes within a low-energy approximation of the anomaly-free supersymmetic extension of the SM with additional Z' vector field [Symmetry 13 (2021) 2, 191]. The key feature of the model is the non-diagonal structure of Z' couplings to fermions, which is parameterized by few new-physics parameters in addition to well-known mixing matrices for quarks and leptons in the SM. We not only consider CP-conserving scenarios with real parameters, but also account for possible CP violation due to new physical weak phases. We analyse the dependence of the  $b \rightarrow s$  observables on the parameters together with correlations between the observables predicted in the model. Special attention is paid to possible enhancement of  $B \to K^{(*)} \nu \bar{\nu}$  rates and to CP-odd angular observables in  $B \to K^* ll$  decays.



Including light RHN fields, the most general dimension-6 effective Hamiltonian relevant for  $b \rightarrow s$ transitions can be written, at the bottom quark-mass scale, as

$$\mathcal{H}_{eff} = -\frac{4G_F \alpha_e}{\sqrt{2} 4\pi} V_{tb} V_{ts}^* \left[ C_L^{SM} \delta_{\alpha\beta} O_L^{\alpha\beta} + \sum_{\alpha\beta} \left( \sum_{i=L^{(\prime)}, R^{(\prime)}} C_i^{\alpha\beta} O_i^{\alpha\beta} + \sum_{j=9^{(\prime)}, 10^{(\prime)}} O_j^{\alpha\beta} C_j^{\alpha\beta} \right) - \frac{(V_{tb} V_{ts}^*)}{\alpha_e} \sum_{i=LL, LR, RR} C_i^{bs} O_i^{bs} \right] + \text{h.c.},$$

$$(4)$$

with four-fermion operators:



(5)

(13)

## **Motivation**

- $B \to K^{(*)} \nu \bar{\nu}$  theoretically much cleaner than  $B \to$  $K^{*}l^{+}l^{-};$
- Experimentally quite challenging due to two missing neutrinos
- No signal has been observed so far;
- Inclusive tagging technique from Belle II has higher efficiency  $\sim 4\%$ ;

• ~  $0.2\sigma$  in  $R_K$  and  $R_K^*$  [LHCb:2022zom]

 $R_{K}^{[1.1-6.0]} = \frac{\mathcal{B}(B \to K\mu^{+}\mu^{-})}{\mathcal{B}(B \to Ke^{+}e^{-})} = 0.949_{-0.041}^{+0.042} \pm 0.022, \qquad R_{K}^{*[1.1-6.0]} = \frac{\mathcal{B}(B_{0} \to K^{*}\mu^{+}\mu^{-})}{\mathcal{B}(B_{0} \to K^{*}e^{+}e^{-})} = 1.027_{-0.068}^{+0.072} \pm 0.027$ 

• ~  $2.5\sigma$  in  $P_5^{\prime [4-6]} = -0.439 \pm 0.111 \pm 0.036$  [Phys.Rev.Lett. 125 (2020) 1, 011802]

• The mass difference of the neutral  $B_s - \bar{B}_s$  meson system

 $\Delta M_s^{exp} = (17.765 \pm 0.004) \text{ ps}^{-1},$ [HFLAV, 2023]  $\Delta M_s^{SM} = (18.77 \pm 0.76) \text{ ps}^{-1}$ [Amhis:2019ckw]

• ~ 2.4 $\sigma$  in  $\mathcal{B}(B_s \to \mu^+ \mu^-)$ 

 $\mathcal{B}(B_s \to \mu^+ \mu^-)^{Exp} = 3.45 \pm 0.29,$ [HFLAV, 2023]  $\mathcal{B}(B_s \to \mu^+ \mu^-)^{SM} = 3.68 \pm 0.14$  [JHEP 11 (2022) 099]

## **Model description**

• U(1)' extension of MSSM with gauge structure:

$$\begin{split} O_{L}^{\alpha\beta} &= (\bar{s}_{L}\gamma^{\mu}b_{L})(\bar{\nu}^{\alpha}\gamma_{\mu}(1-\gamma_{5})\nu^{\beta}), \qquad O_{R}^{\alpha\beta} &= (\bar{s}_{R}\gamma^{\mu}b_{R})(\bar{\nu}^{\alpha}\gamma_{\mu}(1-\gamma_{5})\nu^{\beta}), \\ O_{L}^{'\alpha\beta} &= (\bar{s}_{L}\gamma^{\mu}b_{L})(\bar{\nu}^{\alpha}\gamma_{\mu}(1+\gamma_{5})\nu^{\beta}), \qquad O_{R}^{'\alpha\beta} &= (\bar{s}_{R}\gamma^{\mu}b_{R})(\bar{\nu}^{\alpha}\gamma_{\mu}(1+\gamma_{5})\nu^{\beta}), \\ O_{9}^{\alpha\beta} &= (\bar{s}_{L}\gamma^{\mu}b_{L})(\bar{l}^{\alpha}\gamma_{\mu}l^{\beta}), \qquad O_{10}^{\alpha\beta} &= (\bar{s}_{L}\gamma^{\mu}b_{L})(\bar{l}^{\alpha}\gamma_{\mu}\gamma_{5}l^{\beta}), \\ O_{9}^{'\alpha\beta} &= (\bar{s}_{R}\gamma^{\mu}b_{R})(\bar{l}^{\alpha}\gamma_{\mu}l^{\beta}), \qquad O_{10}^{'\alpha\beta} &= (\bar{s}_{R}\gamma^{\mu}b_{R})(\bar{l}^{\alpha}\gamma_{\mu}\gamma_{5}l^{\beta}), \\ O_{LL(RR)}^{bs} &= (\bar{s}_{L(R)}\gamma^{\mu}b_{L(R)})(\bar{s}_{L(R)}\gamma^{\mu}b_{L(R)}), \qquad O_{LR}^{bs} &= (\bar{s}_{L}\gamma^{\mu}b_{L})(\bar{s}_{R}\gamma^{\mu}b_{R}), \end{split}$$

The SM contribution to  $C_9$ ,  $C_{10}$  to NNLO accuracy,  $C_L^{\alpha\alpha}$  to NLO and  $C_{LL}^{bs}$  at the scale  $\mu = m_b = 4.8$ GeV is given by:

$$C_9^{SM} = 4.211, \qquad C_{10}^{SM} = -4.103, \qquad C_L^{\alpha\alpha} \equiv C_L^{SM} = -2X_t/s_w^2, \qquad X_t = 1.469 \pm 0.017,$$
 (6)

$$C_{LL}^{bs(SM)} = \eta_{B_s} x_t \left[ 1 + \frac{9}{1 - x_t} - \frac{6}{(1 - x_t)^2} - \frac{6x_t^2 \ln x_t}{(1 - x_t)^3} \right], \qquad x_t \equiv m_t^2 / m_W^2, \qquad \eta_{B_s} = 0.551.$$
(7)

After integrating out the heavy Z', we get the effective four-fermion Hamiltonian. The relevant terms in the effective Hamiltonian is given by

 $\mathcal{H}_{eff}^{Z'} = \frac{g_E^2}{2M_{Z'}^2} J_\alpha J^\alpha \supset \frac{g_E^2}{M_{Z'}^2} g_L^{bs} (\bar{s}\gamma^\alpha P_L b) [\bar{l}\gamma_\alpha (g_L^{ll'} P_L + g_R^{ll'} P_R) l']$  $+ \frac{g_E^2}{M^2} g_R^{bs} (\bar{s}\gamma^{\alpha} P_R b) [\bar{l}\gamma_{\alpha} (g_L^{ll'} P_L + g_R^{ll'} P_R) l]$  $+\frac{g_E^2}{2M_{\pi^2}^2}(g_{L(R)}^{bs})^2(\bar{s}\gamma^{\alpha}P_{L(R)}b)(\bar{s}\gamma^{\alpha}P_{L(R)}b)$  $+ \frac{g_E^2}{M^2} (g_L^{bs}) (g_R^{bs}) (\bar{s}\gamma^{\alpha} P_L b) (\bar{s}\gamma^{\alpha} P_R b)$  $+\frac{g_E^2}{M^2}g_L^{bs}(\bar{s}\gamma^{\alpha}P_Lb)[\bar{\nu}\gamma_{\alpha}(g_L^{\nu\nu'}P_L+g_R^{\nu\nu'}P_R)\nu']$  $+ \frac{g_{E}^{z}}{M^{2}} g_{R}^{bs} (\bar{s}\gamma^{\alpha} P_{R} b) [\bar{\nu}\gamma_{\alpha} (g_{L}^{\nu\nu'} P_{L} + g_{R}^{\nu\nu'} P_{R})\nu'] + \text{h.c.} \quad (8)$ 

Here  $M_{Z'}$  denotes the Z'-boson mass,  $g_E - U(1)'$  gauge coupling. Comparing Eq. (8) with Eq. (4), one gets the expressions for the Wilson coefficients induced by the Z' exchange

### **Model predictions**

CP conserving  $\alpha_{13} = (2.0 \pm 4) \cdot 10^{-3}$ ,  $\alpha_{23} = -0.207 \pm 0.022$ ,  $\beta_{13} = 0.61 \pm 0.10$ ,  $\beta_{23} = 0 \pm 0.5$ ,  $M_{Z'}/g_E = 16.1 \pm 0.6$  TeV,  $\phi_{13} = \phi_{23} = \chi_{13} = \chi_{23} = 0$ ,  $\alpha_{13} = (8 \pm 2) \cdot 10^{-3}, \qquad \alpha_{23} = 0.34 \pm 0.08, \qquad \beta_{13} = 0.76 \pm 0.17, \qquad \beta_{23} = 0.0 \pm 0.3, \qquad M_{Z'}/g_E = 18.4 \pm 1.7 \text{TeV}, \qquad \phi_{23} = -0.65 \pm 0.24, \qquad \chi_{13} = \chi_{23} = 0.0 \pm 0.3, \qquad M_{Z'}/g_E = 18.4 \pm 1.7 \text{TeV}, \qquad \phi_{23} = -0.65 \pm 0.24, \qquad \chi_{13} = \chi_{23} = 0.0 \pm 0.3, \qquad M_{Z'}/g_E = 18.4 \pm 1.7 \text{TeV}, \qquad \phi_{23} = -0.65 \pm 0.24, \qquad \chi_{13} = \chi_{23} = 0.0 \pm 0.3, \qquad M_{Z'}/g_E = 18.4 \pm 1.7 \text{TeV}, \qquad \phi_{23} = -0.65 \pm 0.24, \qquad \chi_{13} = \chi_{23} = 0.0 \pm 0.3, \qquad M_{Z'}/g_E = 18.4 \pm 1.7 \text{TeV}, \qquad \phi_{23} = -0.65 \pm 0.24, \qquad \chi_{13} = \chi_{23} = 0.0 \pm 0.3, \qquad M_{Z'}/g_E = 18.4 \pm 1.7 \text{TeV}, \qquad \chi_{13} = \chi_{23} = 0.0 \pm 0.3, \qquad M_{Z'}/g_E = 18.4 \pm 1.7 \text{TeV}, \qquad \chi_{13} = \chi_{23} = 0.0 \pm 0.3, \qquad M_{Z'}/g_E = 18.4 \pm 1.7 \text{TeV}, \qquad \chi_{13} = \chi_{23} = 0.0 \pm 0.3, \qquad M_{Z'}/g_E = 18.4 \pm 1.7 \text{TeV}, \qquad \chi_{13} = \chi_{23} = 0.0 \pm 0.3, \qquad M_{Z'}/g_E = 18.4 \pm 1.7 \text{TeV}, \qquad \chi_{13} = \chi_{23} = 0.0 \pm 0.3, \qquad M_{Z'}/g_E = 18.4 \pm 1.7 \text{TeV}, \qquad \chi_{13} = \chi_{23} = 0.0 \pm 0.3, \qquad \chi_{13} = \chi_{13} = \chi_{13} = 0.0 \pm 0.3, \qquad \chi_{13} = \chi_{13} = \chi_{13} = 0.0 \pm 0.3, \qquad \chi_{13} = \chi_{13} = \chi_{13} = \chi_{13} = 0.0 \pm 0.3, \qquad \chi_{13} = \chi_{$ CP violating

#### $SU(3) \times SU(2) \times U(1) \times U(1)'$

- MSSM chiral multiplets + singlet superfield S (allows one to break U(1)' spontaneously and generate mass for the corresponding Z' boson);
- Three right-handed chiral superfields  $\nu_{1,2,3}^c$ ;

|                                   | field     | Q' | field         | Q' | field           | Q' |
|-----------------------------------|-----------|----|---------------|----|-----------------|----|
|                                   | $Q_{1,2}$ | 0  | $U_{1,2}^{c}$ | 0  | $D_{1,2}^{c}$   | 0  |
| • Non universal charges for ACCs. | $Q_3$     | +1 | $U_3^c$       | -1 | $D_3^c$         | -1 |
| • Non-universal charges for ACCS. | $L_{1,2}$ | -1 | $E_{1,2}^{c}$ | +1 | $\nu_{1,2}^{c}$ | +1 |
|                                   | $L_3$     | 0  | $E_3^c$       | +1 | $\nu_3^c$       | 0  |
|                                   | $H_d$     | -1 | $H_u$         | 0  | S               | +1 |

#### • Superpotential:

 $W = \sum_{i,j=1,2} Y_{u}^{ij} Q_{i} H_{u} U_{j}^{c} + Y_{u}^{33} Q_{3} H_{u} U_{3}^{c} - (Q_{3} H_{d}) (Y_{d}^{31} D_{1}^{c} + Y_{d}^{32} D_{2}^{c})$  $+ \sum_{i,j=1,2} Y_{\nu}^{ij} L_{i} H_{u} \nu_{j}^{c} + M_{3}^{\nu} \nu_{3}^{c} \nu_{3}^{c} + Y_{\nu}^{33} L_{3} H_{u} \nu_{3}^{c}$  $- (L_{3} H_{d}) \left(Y_{e}^{31} E_{1}^{c} + Y_{e}^{32} E_{2}^{c} + Y_{e}^{33} E_{c}^{3}\right) + \lambda_{s} S H_{u} H_{d}$ 

• The gauge field Z' couples to quarks and leptons as

$$\mathcal{L} \ni g_E Z'_{\alpha} \left[ \bar{b} \gamma_{\alpha} b + \bar{t} \gamma_{\alpha} t \right] - g_E Z'_{\alpha} \left[ \sum_{i=1,2} \left( \left[ \bar{l}_{iL} \gamma_{\alpha} l_{iL} + \bar{\nu}_{iL} \gamma_{\alpha} \nu_{iL} \right] + \bar{\nu}_{iR} \gamma_{\alpha} \nu_{iR} \right) - \sum_{i=1,3} \bar{l}_{iR} \gamma_{\alpha} l_{iR} \right].$$

$$(2)$$

• Non-holomorphic soft SUSY-breaking terms:

$$anh = \sum_{i=1}^{2} \alpha_{ii} (\pi * i) \tilde{r} (\pi *$$



|                                                            |                    |                                     |                   | 1                 |
|------------------------------------------------------------|--------------------|-------------------------------------|-------------------|-------------------|
| Obs                                                        | SM                 | Exp                                 | $FIT_1$           | $FIT_2$           |
| $R_K(B^+)^{[1.1,6.0]}$                                     | $1 \pm 0.01$       | $0.949^{+0.042}_{-0.041} \pm 0.022$ | $0.894 \pm 0.011$ | $0.897 \pm 0.012$ |
| $R_K^*(B^0)^{[1.1,6.0]}$                                   | $1 \pm 0.01$       | $1.027^{+0.072}_{-0.068} \pm 0.027$ | $0.955 \pm 0.025$ | $0.923 \pm 0.032$ |
| $P_5^{\prime [4,6]}$                                       | $-0.757 \pm 0.077$ | $-0.439 \pm 0.111 \pm 0.036$        | $-0.53\pm0.13$    | $-0.56 \pm 0.13$  |
| $\Delta M_{B_s}, \mathrm{ps}^{-1}$                         | $18.77\pm0.76$     | $17.765 \pm 0.004$                  | $17.74 \pm 2.45$  | $17.27 \pm 1.19$  |
| $\mathcal{B}(B_s \to \mu\mu) \cdot 10^{-9}$                | $3.68 \pm 0.14$    | $3.45 \pm 0.29$                     | $3.69 \pm 0.23$   | $3.68 \pm 0.22$   |
| $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) \times 10^{-6}$    | $4.6\pm0.5$        | $11 \pm 4, < 19$                    | $5.38 \pm 0.38$   | $5.22 \pm 0.34$   |
| $\mathcal{B}(B^0 \to K^0 \nu \bar{\nu}) \times 10^{-6}$    | $4.1\pm0.5$        | < 26                                | $4.99 \pm 0.31$   | $4.83 \pm 0.32$   |
| $\mathcal{B}(B^0 \to K^{0*} \nu \bar{\nu}) \times 10^{-6}$ | $9.6 \pm 0.9$      | < 18                                | $10.10 \pm 1.46$  | $10.30 \pm 1.36$  |
| $\mathcal{B}(B^+ \to K^{+*} \nu \bar{\nu}) \times 10^{-6}$ | $9.6 \pm 0.9$      | < 61                                | $10.90 \pm 1.33$  | $11.10 \pm 0.96$  |
| $F_L^{B^0 \to K^* \nu \bar{\nu}}$                          | $0.47\pm0.03$      | -                                   | $0.479 \pm 0.05$  | $0.484 \pm 0.06$  |
| $R_K^{\nu\bar{\nu}}$                                       | 1                  | $2.4 \pm 0.9$                       | $1.14 \pm 0.028$  | $1.10 \pm 0.024$  |
| $R_{K^*}^{\nu\bar\nu}$                                     | 1                  | < 1.9                               | $1.07 \pm 0.024$  | $1.08 \pm 0.022$  |

 $C_{LL(RR)}^{bs} = -\frac{1}{4\sqrt{2}G_F(V_{tb}V_{ts}^*)^2} \frac{g_E^2}{M_{Z'}^2} (g_{L(R)}^{bs})^2$ 

 $C_{LR}^{bs} = -\frac{1}{2\sqrt{2}G_F(V_{tb}V_{ts}^*)^2} \frac{g_E^2}{M_{Z'}^2} (g_L^{bs})(g_R^{bs}),$ 

where the overall factor is given by  $\mathcal{N} = -\frac{\pi}{\sqrt{2}G_F \alpha_e V_{tb} V_{te}^*}$ 

 $C_{9}^{ll'} = \mathcal{N} \frac{g_{E}^{2}}{M_{Z'}^{2}} g_{L}^{bs} [g_{R} + g_{L}]^{ll'} \qquad C_{9}^{\prime ll'} = \mathcal{N} \frac{g_{E}^{2}}{M_{Z'}^{2}} g_{R}^{bs} [g_{R} + g_{L}]^{ll'}, \qquad (9)$   $C_{10}^{ll'} = \mathcal{N} \frac{g_{E}^{2}}{M_{Z'}^{2}} g_{L}^{bs} [g_{R} - g_{L}]^{ll'} \qquad C_{10}^{\prime ll'} = \mathcal{N} \frac{g_{E}^{2}}{M_{Z'}^{2}} g_{R}^{bs} [g_{R} - g_{L}]^{ll'}, \qquad (10)$   $C_{L}^{\nu\nu'} = \mathcal{N} \frac{g_{E}^{2}}{M_{Z'}^{2}} g_{L}^{bs} [g_{L}]^{\nu\nu'} \qquad C_{L}^{\prime\nu\nu'} = \mathcal{N} \frac{g_{E}^{2}}{M_{Z'}^{2}} g_{L}^{bs} [g_{R}]^{\nu\nu'}, \qquad (11)$   $C_{R}^{\nu\nu'} = \mathcal{N} \frac{g_{E}^{2}}{M_{Z'}^{2}} g_{R}^{bs} [g_{L}]^{\nu\nu'} \qquad C_{R}^{\prime\nu\nu'} = \mathcal{N} \frac{g_{E}^{2}}{M_{Z'}^{2}} g_{R}^{bs} [g_{R}]^{\nu\nu'}, \qquad (12)$ 

|                  | $A_7^{[1.1,6]}(\%)$          | $A_8^{[1.1,6]}(\%)$          | $A_9^{[1.1,6]}(\%)$         | $A_{CP}^{[1.1,6]}(K^*)(\%)$ | $A_{CP}^{[1.1,6]}(K)(\%)$ | $A_{FB}^{[1.1,6]}(\%)$ | $F_L^{[1.1,6]}$             |
|------------------|------------------------------|------------------------------|-----------------------------|-----------------------------|---------------------------|------------------------|-----------------------------|
| EXP              | $-4.5^{+5.0}_{-5.0} \pm 0.6$ | $-4.7^{+5.8}_{-5.7} \pm 0.8$ | $-3.3^{+4.0}_{-4.2}\pm0.4$  | $-9.4 \pm 4.7$              | $0.4 \pm 2.8$             | $-7.3 \pm 2.1 \pm 0.2$ | $0.700 \pm 0.025 \pm 0.013$ |
| FIT <sub>1</sub> | $0.24\pm0.11$                | $0.03 \pm 0.04$              | $0.02\pm0.01$               | $0.05\pm0.09$               | $0.09\pm0.09$             | $-5.31 \pm 4.86$       | $0.721 \pm 0.061$           |
| FIT <sub>2</sub> | $0.32\pm0.13$                | $-2.40 \pm 1.26$             | $-0.24\pm0.14$              | $0.10\pm0.68$               | $-0.26\pm0.78$            | $-5.06\pm5.02$         | $0.715 \pm 0.060$           |
|                  | $A_7^{[15,19]}(\%)$          | $A_8^{[15,19]}(\%)$          | $A_9^{[15,19]}(\%)$         | $A_{CP}^{[15,19]}(K^*)(\%)$ | $A_{CP}^{[15,19]}(K)(\%)$ | $A_{FB}^{[15,19]}(\%)$ | $F_L^{[15,19]}$             |
| EXP              | $-4.0^{+4.5}_{-4.4}\pm0.6$   | $2.5^{+4.8}_{-4.7} \pm 0.3$  | $6.1^{+4.3}_{-4.4} \pm 0.2$ | $-7.4 \pm 4.4$              | $-0.5 \pm 3.0$            | $35.3 \pm 2.0 \pm 1.0$ | $0.345 \pm 0.020 \pm 0.007$ |
| FIT <sub>1</sub> | $0.011\pm0.08$               | $-0.01\pm0.02$               | $-0.03\pm0.02$              | $-0.10\pm0.05$              | $-0.21\pm0.11$            | $31.72 \pm 4.99$       | $0.346 \pm 0.043$           |
| FIT <sub>2</sub> | $0.014 \pm 0.08$             | $-0.44 \pm 0.24$             | $-0.69 \pm 0.20$            | $-1.18 \pm 0.44$            | $-2.99 \pm 1.24$          | $33.08 \pm 4.86$       | $0.341 \pm 0.044$           |



### **Future prospects & Results**

- $A_i, S_i$  and  $A_{CP}$  measurements for  $B^0 \to K^* \mu^+ \mu^$ decay:
  - $-3fb^{-1}$  [JHEP 02 (2016) 104]:  $\sim 4 6\%$
  - $-4.7 fb^{-1}$  [Phys.Rev.Lett. 125 (2020) 1, 011802]:  $\sim 2 - 4\%$
  - $-50 f b^{-1}$  [LHCb:2022ine]:  $\sim 1 1.5\%$
- $-300 f b^{-1}$  [LHCb:2022ine]:  $\sim 0.4 0.6\%$

Thus, the enhancements in  $A_8$  and  $A_{CP}(K)$  predicted by  $FIT_2$  can be tested experimentally.

• Dineutrino modes [Belle-II:2022cgf] 50 $ab^{-1}$ :  $R_{K}^{\nu\bar{\nu}}$ 0.08 and  $R_{K^*}^{\nu\bar{\nu}}$  0.23. Obviously, this is not enough to favour or exclude our benchmark points. Nevertheless, some scenarios lying in the vicinity of the FIT<sub>2</sub>, predict  $R_K^{\nu\bar{\nu}} \sim 1.3 - 1.35$ , and, thus, can be probed by future Belle II measurements.



**Figure 1:** Some of the Feynman diagrams that give contributions  $\kappa_u^{ij} \propto C_U^{*ij}$  (left) and  $\kappa_d^{ij} \propto C_D^{*ij}$  (right) to the mass matrices  $m_u$  and  $m_d$ , respectively. Here  $\chi_0, \tilde{g}$  denote Majorana neutralinos and gluinos.

Figure 2: The new weak phase dependence of the  $A_8^{[1.1,6]}, A_{CP}^{[15,19]}(K), F_L^{[0.1,0.98]}, A_{FB}^{[2.5,4]}$  observables. Here green band is  $1\sigma$  experimental limit. Dotted line is central value of model prediction for  $FIT_2$ .

- 1. Sizeable CP violation in  $B^0 \rightarrow K^* \mu^+ \mu^-$  observables, for example, in  $A_8^{[1.1,6]}$ ,  $A_{CP}^{[15,19]}(K)$  and  $A_{CP}^{[15,19]}(K^*)$ , is predicted;
- 2. Have found that  $A_{CP}(K^{(*)})$  can be enhanced only in high- $q^2$  region up to  $\sim -8\%$  for K-mode and up to  $\sim -4\%$  for  $K^*$ -mode;
- 3. Have observed that the triple product  $A_7$ ,  $A_8$ ,  $A_9$ asymmetries are more prominent to the new CP violating phase, and can attain a few percent in the central- and high- $q^2$ ;
- 4. Estimated future prospects of  $A_i$ ,  $S_i$  and  $A_{CP}$  measurements for  $B^0 \to K^* \mu^+ \mu^-$  decay and for dineutrino modes.