STUDY OF THE NONLEPTONIC DECAY $\Xi_{c}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$IN THE CCQM Zhomart Tyulemissov ${ }^{1,2}$, Mikhail A. Ivanov ${ }^{1}$, Valery E. Lyubovitskij ${ }^{3}$
 ${ }^{1}$ Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia
 ${ }^{2}$ The Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan, Almaty, Kazakhstan ${ }^{3}$ Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Tübingen, Germany

Abstract

The nonleptonic decay $\Xi_{c}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$with $\Delta C=0$ is systematically studied in the framework of the covariant confined quark model (CCQM) with account for both short and long distance effects. The short distance effects are induced by four topologies of external and internal weak $W^{ \pm}$exchange, while long distance effects are saturated by an inclusion of the so-called pole diagrams with an intermediate $\frac{1}{2}^{+}$and $\frac{1}{2}^{-}$baryon resonances. The contributions from $\frac{1}{2}^{+}$resonances are calculated straightforwardly by account for single charmed Σ_{c}^{0} and $\Xi_{c}^{\prime+}$ baryons whereas the contributions from $\frac{1}{2}^{-}$resonances are calculated by using the well-known soft-pion theorem in the current-algebra approach. It allows to express the parity-violating S-wave amplitude in terms of parity-conserving matrix elements. It is found that the contribution of external and internal W-exchange diagrams is significantly suppressed by more than one order of magnitude in comparison with data. The pole diagrams play the major role to get consistency with experiment.

Nonleptonic decay $\Xi_{c}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$

The effective Hamiltonian needed for the calculation of the $\Xi_{c}^{0} \rightarrow \Lambda_{c}^{+}+\pi^{-}$decay is written down

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{\Delta S=1}=\frac{G_{F}}{\sqrt{2}} & {\left[V_{u s}^{*} V_{u d}\left(C_{1}^{(u)}\left(\mu_{u}\right) Q_{1}^{(u)}+C_{2}^{(u)}\left(\mu_{u}\right) Q_{2}^{(u)}\right)\right.} \\
& \left.+V_{c s}^{*} V_{c d}\left(C_{1}^{(c)}\left(\mu_{c}\right) Q_{1}^{(c)}+C_{2}^{(c)}\left(\mu_{c}\right) Q_{2}^{(c)}\right)+\text { H.c. }\right],
\end{aligned}
$$

where Q_{1} and Q_{2} is the set of flavor-changing effective four-quark operators given by

$$
\begin{aligned}
Q_{1}^{(u)} & =\left(\bar{s}_{a} O_{L}^{\mu} u_{b}\right)\left(\bar{u}_{b} O_{\mu L} d_{a}\right), & Q_{2}^{(u)}=\left(\bar{s}_{a} O_{L}^{\mu} u_{a}\right)\left(\bar{u}_{b} O_{\mu L} d_{b}\right), \\
Q_{1}^{(c)} & =\left(\bar{s}_{a} O_{L}^{\mu} c_{b}\right)\left(\bar{c}_{b} O_{\mu L} d_{a}\right), & Q_{2}^{(c)}=\left(\bar{s}_{a} O_{L}^{\mu} c_{a}\right)\left(\bar{c}_{b} O_{\mu L} d_{b}\right) .
\end{aligned}
$$

Here $O_{L}^{\mu}=\gamma^{\mu}\left(1-\gamma_{5}\right)$ is the left-handed chiral weak matrix. One has to note that we adopt that the $C_{2} Q_{2}$ means the leading order, whereas the $C_{1} Q_{1}$ is for subleading order. The numerical values of the Wilson coefficients C_{1} and C_{2} are being equal to

$$
\begin{aligned}
C_{1}^{(u)}\left(\mu_{u}\right) & =-0.625, & C_{2}^{(u)}\left(\mu_{u}\right)=1.361, & \left(\mu_{u}=O(1 \mathrm{GeV})\right), \\
C_{1}^{(c)}\left(\mu_{c}\right) & =-0.621, & C_{2}^{(c)}\left(\mu_{c}\right)=1.336, & \left(\mu_{c}=O\left(m_{c}\right)\right) .
\end{aligned}
$$

The numerical values of the CKM matrix elements needed in our calculations are taken from PDG:

$$
\begin{array}{ll}
\left|V_{u d}\right|=0.97373 \pm 0.00031, & \left|V_{u s}\right|=0.2243 \pm 0.0008, \\
\left|V_{c d}\right|=0.221 \pm 0.004, & \left|V_{c s}\right|=0.975 \pm 0.006,
\end{array}
$$

that approximately give $V_{\mathrm{CKM}}^{(u)} \approx 0.218$ and $V_{\mathrm{CKM}}^{(c)} \approx-0.215$.

Numerical results

Table I. SD, LD and full amplitudes in units of GeV^{2}.

Amplitudes	SD	LD	SD + LD
A-ampl.	0.0156	-0.0751	-0.0595
B-ampl.	0.166	-5.378	-5.212

Table II. Comparison of our findings with other approaches.

Approach	$\operatorname{BR}\left(\Xi_{c}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right) \%$	Asymmetry
Our model	0.54 ± 0.11	-0.75
LHCb [1]	$0.55 \pm 0.02 \pm 0.1$	-
Belle [2]	$0.54 \pm 0.05 \pm 0.12$	-
Voloshin [3]	$>0.025 \pm 0.015$	-
Gronau and Rosner [4] (construc)	0.194 ± 0.070	-
Gronau and Rosner [4] (destruc)	<0.01	-
Faller and Mannel [5]	<0.39	-
Cheng et al. [6]	0.72 ± 0.07	0.46 ± 0.05
Niu et al. [7]	0.58 ± 0.21	-0.16

[1] R. Aaij et al. [LHCb], Phys. Rev. D 102, no.7, 071101 (2020). [2] S. S. Tang et al. [Belle], Phys. Rev. D 107, no.3, 032005 (2023)
[3] M. B. Voloshin, Phys. Rev. D 100, no.11, 114030 (2019)
[4] M. Gronau and J. L. Rosner, Phys. Lett. B 757, 330-333 (2016)
[5] S. Faller and T. Mannel, Phys. Lett. B 750, 653-659 (2015).
[6] H. Y. Cheng, C. W. Liu and F. Xu, Phys. Rev. D 106, no.9, 093005 (2022)
[7] P. Y. Niu, Q. Wang and Q. Zhao, Phys. Lett. B 826, 136916 (2022).

Matrix elements

Ia

IIb
$\Xi_{c}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$via $s \rightarrow u(d \bar{u})$ transitions.

IIa

III
$\Xi_{c}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$via $s c \rightarrow d c$ transitions.

The matrix elements corresponding to the decay are written down

$$
M\left(\Xi_{c}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)=\frac{G_{F}}{\sqrt{2}} \bar{u}\left(p_{2}\right)\left(\left(A_{\mathrm{SD}}+A_{\Sigma_{c}^{0}}+A_{\Xi_{c}^{\prime}+}\right)+\gamma_{5}\left(B_{\mathrm{SD}}+B_{\Sigma_{c}^{0}}+B_{\Xi_{c}^{\prime+}}\right)\right) u\left(p_{1}\right) .
$$

Branching

