Bjorken Sum Rule With New Analytic Coupling

D.A. Volkova ${ }^{1,2}$, A.V. Kotikov ${ }^{1}$, N.A. Gramotkov ${ }^{1,3}$, I.R. Gabdrakhmanov ${ }^{1}$, I.A. Zemlyakov ${ }^{1,4}$
${ }^{1}$ Joint Institute for Nuclear Research, 141980 Dubna, Russia;
${ }^{2}$ Dubna State University, 141980 Dubna, Moscow Region, Russia;
${ }^{3}$ Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia;
${ }^{4}$ Tomsk State University, 634010 Tomsk, Russia.

Abstract: We analyze recently obtained experimental data for the polarized Bjorken sum rule in the region of small values of Q^{2}. Our investigation is based on a new form of coupling constant which doesn't contain the Landau pole. We found an excellent agreement between the experimental data and the predictions of analytic QCD, as well as a strong difference between these data and the results obtained in the framework of perturbative QCD.

Introduction

We introduce the derivatives (in the k-order of perturbation theory (PT)) [1]

$$
\tilde{a}_{n+1}^{(k)}\left(Q^{2}\right)=\frac{(-1)^{n}}{n!} \frac{d^{n} a_{s}^{(k)}\left(Q^{2}\right)}{(d L)^{n}}, \quad a_{s}^{(k)}\left(Q^{2}\right)=\frac{\beta_{0} \alpha_{s}^{(k)}\left(Q^{2}\right)}{4 \pi},
$$

where $L=\ln \frac{Q^{2}}{\Lambda^{2}}, Q^{2}=-q^{2}, q^{2}$ - transferred momentum in the Euclidean domain for spacelike processes. The series of derivatives $\tilde{a}_{n}\left(Q^{2}\right)$ can successfully replace the corresponding series of $a_{s}\left(Q^{2}\right)$ powers.

Analytic Coupling

Fig. 1 Comparison $a_{s}^{(i)}\left(Q^{2}\right)$ and $A_{\mathrm{MA}, i}^{(i)}\left(Q^{2}\right)$. Vertical lines indicate the appropriate values of Λ_{i}.
In the frame of analytical perturbation theory (APT) [2] one can construct new holomorphic couplant $A_{\text {MA }}^{(i)}\left(Q^{2}\right)$

$$
A_{\mathrm{MA}}^{(i)}\left(Q^{2}\right)=\frac{i}{\pi} \int_{0}^{+\infty} \frac{d \sigma}{\left(\sigma+Q^{2}\right)} r_{\mathrm{pt}}^{(i)}(\sigma), \quad r_{\mathrm{pt}}^{(i)}(\sigma)=\operatorname{Im} a_{s}^{(i)}(-\sigma-i \epsilon) .
$$

The final expressions for $\tilde{a}_{\nu}^{(i+1)}\left(Q^{2}\right)$ are represented as the sum of LO expression and the high order corrections [3]

$$
\tilde{a}_{\nu}^{(i+1)}\left(Q^{2}\right)=\tilde{a}_{\nu}^{(1)}\left(Q^{2}\right)+\sum_{m=1}^{i} \frac{\Gamma(\nu+m)}{m!\Gamma(\nu)}\left(\hat{R}_{m} \tilde{a}_{\nu+m}^{(i+1)}\left(Q^{2}\right)\right),
$$

where \hat{R}_{m} - differential operators $\left(\sim d^{m} / d \nu^{m}\right)$. The structure of spectral integral allows to permorf the same operation for $\tilde{A}_{\mathrm{MA}}^{(i)}\left(Q^{2}\right)$:

$$
\tilde{A}_{\mathrm{MA}, \nu}^{(i+1)}\left(Q^{2}\right)=\tilde{A}_{\mathrm{MA}, \nu}^{(1)}\left(Q^{2}\right)+\sum_{m=1}^{i} \frac{\Gamma(\nu+m)}{m!\Gamma(\nu)}\left(\hat{R}_{m} \tilde{A}_{\mathrm{MA}, \nu+m}^{(1)}\left(Q^{2}\right)\right) .
$$

Bjorken Sum Rule

The definition of polarized Bjorken sum rule (BSR)

$$
\Gamma_{1}^{p-n}\left(Q^{2}\right)=\int_{0}^{1} d x\left[g_{1}^{p}\left(x, Q^{2}\right)-g_{1}^{n}\left(x, Q^{2}\right)\right] .
$$

BSR in the OPE form (twist-2+massive twist-4) reads [4]

$$
\Gamma_{1}^{p-n}\left(Q^{2}\right)=\frac{g_{A}}{6}\left(1-D_{\mathrm{BS}}\left(Q^{2}\right)\right)+\frac{\hat{\mu}_{4} M^{2}}{Q^{2}+M^{2}}
$$

and another form of twist-4 term for small Q^{2} values [5]

$$
\Gamma_{1}^{p-n}\left(Q^{2}\right)=\frac{g_{A}}{6}\left(1-D_{\mathrm{BS}}\left(Q^{2}\right)\right)+\frac{\hat{\mu}_{4} M^{2}\left(Q^{2}+M^{2}\right)}{\left(Q^{2}+M^{2}\right)^{2}+M^{2} \sigma^{2}} .
$$

The twist-2 term $D_{\mathrm{BS}}\left(Q^{2}\right)$ in PT and APT takes the form

$$
\begin{aligned}
D_{\mathrm{BS}}^{(k)}\left(Q^{2}\right) & =\frac{4}{\beta_{0}}\left(\tilde{a}_{1}^{(k)}+\sum_{m=2}^{k} \tilde{d}_{m-1} \tilde{a}_{m}^{(k)}\right), \\
D_{\mathrm{MA}, \mathrm{BS}}^{(k)}\left(Q^{2}\right) & =\frac{4}{\beta_{0}}\left(A_{\mathrm{MA}}^{(k)}+\sum_{m=2}^{k} \tilde{d}_{m-1} \tilde{A}_{\mathrm{MA}, \nu=\mathrm{m}}^{(k)}\right) .
\end{aligned}
$$

Fig. 2 The results for $\Gamma_{1}^{p-n}\left(Q^{2}\right)$ in the first four orders of APT with $\sigma=\sigma_{\rho}$.
The values of the fit parameters with $\sigma=\sigma_{\rho}=145 \mathrm{MeV}$ (the ρ-meson decay width) and $\sigma=0$:

	M^{2} for $\sigma=\sigma_{\rho}$ (for $\sigma=0$)	$\hat{M}_{\mathrm{MA}, 4}$ for $\sigma=\sigma_{\rho}$ (for $\sigma=0$)	$\chi^{2} /\left(\right.$ d.o.f.) for $\sigma=\sigma_{\rho}$ (for $\sigma=0)$
LO	1.592 ± 0.300	-0.168 ± 0.002	0.788
	(1.631 ± 0.301)	(-0.166 ± 0.001)	(0.789)
NLO	1.505 ± 0.286	-0.157 ± 0.002	0.755
	(1.545 ± 0.287)	(-0.155 ± 0.001)	(0.757)
$\mathrm{N}^{2} \mathrm{LO}$	1.378 ± 0.242	-0.159 ± 0.002	0.728
	(1.417 ± 0.241)	(-0.156 ± 0.002)	(0.728)
$\mathrm{N}^{3} \mathrm{LO}$	1.389 ± 0.247	-0.159 ± 0.002	0.747
	(1.429 ± 0.248)	(-0.157 ± 0.002)	(0.747)
$\mathrm{N}^{4} \mathrm{LO}$	1.422 ± 0.259	-0.159 ± 0.002	0.754
	(1.462 ± 0.259)	(-0.157 ± 0.001)	(0.754)

Summary

- The calculation results taking into account only statistical uncertainties.
- The cases $\sigma=0$ and $\sigma=\sigma_{\rho}$ lead to very similar values for the fitting parameters and χ^{2}-factor.
- The quality of the APT fits is very good (as evidenced quantitatively by the values of $\chi^{2} /($ d.o.f. $\left.)\right)$ and much better than PT fits.

Acknowledgments

This work was supported in part by the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS"

References

[1] G. Cvetic and C. Valenzuela, J. Phys. G 32, L27 (2006); Phys. Rev. D 74 (2006), 114030 [erratum: Phys. Rev. D 84 (2011), 019902]
[2] D. V. Shirkov and I. L. Solovtsov, Phys. Rev. Lett. 79 (1997), 1209-1212; A. P. Bakulev, S. V. Mikhailov and N. G. Stefanis, Phys. Rev. D 72 (2005), 074014 [Erratumibid. D 72 (2005), 119908] [3] A. V. Kotikov and I. A. Zemlyakov, J. Phys. G 50, 1 (2023), 015001
[4] O. Teryaev, Nucl. Phys. B Proc. Suppl. 245 (2013), 195-198; V. L. Khandramai, O. V. Teryaev and I. R. Gabdrakhmanov, J. Phys. Conf. Ser. 678 (2016) no.1, 012018
[5] I. R. Gabdrakhmanov, O. V. Teryaev and V. L. Khandramai, J. Phys. Conf. Ser. 938 (2017) no.1, 012046

