Bjorken Sum Rule With New Analytic Coupling D.A. Volkova^{1,2}, A.V. Kotikov¹, N.A. Gramotkov^{1,3}, I.R. Gabdrakhmanov¹, I.A. Zemlyakov^{1,4} ¹ Joint Institute for Nuclear Research, 141980 Dubna, Russia; ² Dubna State University, 141980 Dubna, Moscow Region, Russia; ³ Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; ⁴ Tomsk State University, 634010 Tomsk, Russia.

Abstract: We analyze recently obtained experimental data for the polarized Bjorken sum rule in the region of small values of Q^2 . Our investigation is based on a new form of coupling constant which doesn't contain the Landau pole. We found an excellent agreement between the experimental data and the predictions of analytic QCD, as well as a strong difference between these data and the results obtained in the framework of perturbative QCD.

Introduction

We introduce the derivatives (in the k-order of perturbation theory (PT)) [1]

and another form of twist-4 term for small Q^2 values [5] $\Gamma_1^{p-n}(Q^2) = \frac{g_A}{6} \left(1 - D_{BS}(Q^2)\right) + \frac{\hat{\mu}_4 M^2 (Q^2 + M^2)}{(Q^2 + M^2)^2 + M^2 \sigma^2}.$ The twist-2 term $D_{BS}(Q^2)$ in PT and APT takes the form

$$\tilde{a}_{n+1}^{(k)}(Q^2) = \frac{(-1)^n}{n!} \frac{d^n a_s^{(k)}(Q^2)}{(dL)^n}, \quad a_s^{(k)}(Q^2) = \frac{\beta_0 \alpha_s^{(k)}(Q^2)}{4\pi},$$

where $L = \ln \frac{Q^2}{\Lambda^2}$, $Q^2 = -q^2$, q^2 – transferred momentum in the Euclidean domain for spacelike processes. The series of derivatives $\tilde{a}_n(Q^2)$ can successfully replace the corresponding series of $a_s(Q^2)$ -powers.

Analytic Coupling

Fig.2 The results for $\Gamma_1^{p-n}(Q^2)$ in the first four orders of APT with $\sigma = \sigma_{\rho}$.

Fig.1 Comparison $a_s^{(i)}(Q^2)$ and $A_{MA,i}^{(i)}(Q^2)$. Vertical lines indicate the appropriate values of Λ_i .

In the frame of analytical perturbation theory (APT) [2] one can construct new holomorphic couplant $A_{\rm MA}^{(i)}(Q^2)$

$$A_{\rm MA}^{(i)}(Q^2) = \frac{i}{\pi} \int_{0}^{+\infty} \frac{d\sigma}{(\sigma + Q^2)} r_{\rm pt}^{(i)}(\sigma), \quad r_{\rm pt}^{(i)}(\sigma) = {\rm Im} \ a_s^{(i)}(-\sigma - i\epsilon) \,.$$

The final expressions for $\tilde{a}_{\nu}^{(i+1)}(Q^2)$ are represented as the sum of LO expression and the high order corrections [3]

$$\tilde{a}_{\nu}^{(i+1)}(Q^2) = \tilde{a}_{\nu}^{(1)}(Q^2) + \sum_{m=1}^{i} \frac{\Gamma(\nu+m)}{m!\Gamma(\nu)} \left(\hat{R}_m \,\tilde{a}_{\nu+m}^{(i+1)}(Q^2)\right),$$

where \hat{R}_m – differential operators (~ $d^m/d\nu^m$). The structure of spectral integral allows to permorf the same operation for $\tilde{A}_{MA}^{(i)}(Q^2)$:

The values of the fit parameters with $\sigma = \sigma_{\rho} = 145$ MeV (the ρ -meson decay width) and $\sigma = 0$:

	M^2 for $\sigma = \sigma_{\rho}$	$\hat{\mu}_{\mathrm{MA},4}$ for $\sigma = \sigma_{ ho}$	$\chi^2/(\text{d.o.f.})$ for $\sigma = \sigma_{ ho}$
	(for $\sigma = 0$)	(for $\sigma = 0$)	(for $\sigma = 0$)
LO	1.592 ± 0.300	-0.168 ± 0.002	0.788
	(1.631 ± 0.301)	(-0.166 ± 0.001)	(0.789)
NLO	1.505 ± 0.286	-0.157 ± 0.002	0.755
	(1.545 ± 0.287)	(-0.155 ± 0.001)	(0.757)
$N^{2}LO$	1.378 ± 0.242	-0.159 ± 0.002	0.728
	(1.417 ± 0.241)	(-0.156 ± 0.002)	(0.728)
N ³ LO	1.389 ± 0.247	-0.159 ± 0.002	0.747
	(1.429 ± 0.248)	(-0.157 ± 0.002)	(0.747)
N ⁴ LO	1.422 ± 0.259	-0.159 ± 0.002	0.754
	(1.462 ± 0.259)	(-0.157 ± 0.001)	(0.754)

Summary

• The calculation results taking into account only statistical uncertainties.

• The cases $\sigma = 0$ and $\sigma = \sigma_{\rho}$ lead to very similar values for the fitting parameters and χ^2 -factor.

$$\tilde{A}_{\mathrm{MA},\nu}^{(i+1)}(Q^2) = \tilde{A}_{\mathrm{MA},\nu}^{(1)}(Q^2) + \sum_{m=1}^{i} \frac{\Gamma(\nu+m)}{m!\Gamma(\nu)} \left(\hat{R}_m \,\tilde{A}_{\mathrm{MA},\nu+m}^{(1)}(Q^2)\right).$$

Bjorken Sum Rule

The definition of polarized Bjorken sum rule (BSR) $\Gamma_1^{p-n}(Q^2) = \int_0^1 dx \left[g_1^p(x,Q^2) - g_1^n(x,Q^2) \right].$ BSR in the OPE form (twist-2+massive twist-4) reads [4] $\Gamma_1^{p-n}(Q^2) = \frac{g_A}{6} \left(1 - D_{\rm BS}(Q^2) \right) + \frac{\hat{\mu}_4 M^2}{Q^2 + M^2}$ • The quality of the APT fits is very good (as evidenced quantitatively by the values of $\chi^2/(d.o.f.)$) and much better than PT fits.

Acknowledgments

This work was supported in part by the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS".

References

G. Cvetic and C. Valenzuela, J. Phys. G **32**, L27 (2006); Phys. Rev. D **74** (2006), 114030
 [erratum: Phys. Rev. D **84** (2011), 019902]
 D. V. Shirkov and I. L. Solovtsov, Phys. Rev. Lett. **79** (1997), 1209-1212; A. P. Bakulev, S. V. Mikhailov and N. G. Stefanis, Phys. Rev. D **72** (2005), 074014 [Erratumibid. D **72** (2005), 119908]
 A. V. Kotikov and I. A. Zemlyakov, J. Phys. G **50**, 1 (2023), 015001
 O. Teryaev, Nucl. Phys. B Proc. Suppl. **245** (2013), 195-198; V. L. Khandramai, O. V. Teryaev and I. R. Gabdrakhmanov, J. Phys. Conf. Ser. **678** (2016) no.1, 012018
 I. R. Gabdrakhmanov, O. V. Teryaev and V. L. Khandramai, J. Phys. Conf. Ser. **938** (2017) no.1, 012046