

Monte Carlo background simulation in a boron loaded scintillator for OLVE-HERO detector

<u>I. Satvshev</u>^{1, 2}, L. G. Tkachev^{1, 3}

¹Joint Institute for Nuclear Research, Dubna, Moscow oblast, Russia ²The Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan, Almaty, Kazakhstan ³Dubna State University, Dubna, Moscow oblast, Russia satvshevi@gmail.com; +7(926)721-63-81

CR spectrum

A "breakthrough" experiment is needed, which will turn high-energy astroparticle physics into an exact science!

Main Requirements: Effective exposure factor >120 m² sr year - Energy resolution

- on Earth orbit until 2030
- The main goal of the HERO mission is to get direct measurements of cosmic rays parameters in the $10^{12} - 10^{16}$ eV energy region
 - -Energy
 - -Direction arrival
 - -Type of the particle
- Geom-factor~ 16 m²sr
- Scintillator + ^{10}B

proto

R = 125 см

Snint+B

for Protons at 1015-1016 eV < 30% at 1012-1015 eV < 20% for Nuclei at 10¹²-10¹⁶ eV < 15-20% for Leptons at 3*10¹¹-10¹³ eV < 1% Charge resolution < 0.2 ch. u. for all Nuclei in full energy range

The scheme of HERO detector

Why do we need a boron loaded scintillator?

- hadrons number is GCRs is 10 000 times greater than electromagnetic particles.
- hadrons produce a larger number of neutrons by interacting with matter
- $n + B^{10} \rightarrow \alpha + Li^7$. α takes almost all the energy
- It will improve the rejection power between \bullet electromagnetic and hadron components of CRs

Monte-Carlo

- to study background alpha counts level from cosmic protons in a boron loaded scintillator
- to estimate energy thresholds for different primary particles

Spectrum of cosmic protons. PAMELA experiment

Monte-Carlo model

MESHCHERYAKO

Monte-Carlo background alpha counts for diff. sizes of the detector

Monte-Carlo thresholds for diff. particles

The calculations were performed on the INP cloud segment, which is included in the distributed information and computing environment of JINR