

# Implementation of the BM@N project



#### M.Kapishin



### **Baryonic Matter at Nuclotron (BM@N) Collaboration:**



#### 5 Countries, 13 Institutions, 210 participants

- University of Plovdiv, Bulgaria
- St.Petersburg University
- Shanghai Institute of Nuclear and Applied Physics, CFS, China;
- Joint Institute for Nuclear Research;
- Institute of Nuclear Research RAS, Moscow
- NRC Kurchatov Institute, Moscow combined with Institute of Theoretical & Experimental Physics. NRC KI. Moscow

- Moscow Engineer and Physics Institute
- Skobeltsyn Institute of Nuclear Physics, MSU, Russia
- Moscow Institute of Physics and Technics
- Lebedev Physics Institute of RAS, Moscow
- Institute of Physics and Technology, Almaty
- Physical-Technical Institute
  Uzbekistan Academy of Sciences, Tashkent
- High School of Economics, National Research University, Moscow





#### Production of *p*, *d*, *t* in **3.2 AGeV argon-nucleus interactions**



120

100 80

20



Two classes of centrality <40% and >40% based on barrel detector and track multiplicities



# **Deuterons: dN/dy dependence on y**



# **Deuterons:** <m<sub>t</sub>> dependence on y





# Coalescence parameter B<sub>3</sub> for triton to proton ratio





Xe<sup>124</sup> + Csl interactions: main trigger cover centrality < 70-75% (85% events) min bias trigger (7% events), beam trigger (3% events)

 $\rightarrow$  Collected 507M events at 3.8 AGeV, 48M events at 3.0 AGeV

#### **Alignment of Si and GEM detectors**

#### $\rightarrow$ Minimize deviation of hits in detectors from reconstructed tracks



#### 14 modules of 3 Si station

4 Si + 7 GEM stations



#### **FST** hit reconstruction in Xe run: 4 Si stations



 $\rightarrow$  Readout cards with defected chips in stations 2, 3 and 4 are replaced

#### Efficiency of Si and GEM detectors in Si run





#### Si-2 station: X/Y map of efficiency

**GEM-3: X/Y map of efficiency** 



**GEM-5: X/Y** map of efficiency



Si-4 station: X/Y map of efficiency



Xe+ CsI data :  $\Lambda \rightarrow p\pi^-$  ,  $K^0_{\ s} \rightarrow \pi^+\pi^-$  ,  $\Xi^- \rightarrow \Lambda\pi^-$ 



#### Xe+CsI data: π+, K+, p, He3, d, t identification



#### Still need dedicated ToF calibration to constrict proton mass peak



#### BM@N acceptance for $\Lambda$ , $K_s^0$ , identified p, d



# **Centrality selection from fits of the track multiplicity**



Γ-fit and MC-Glauber fit are in agreement  Parametrization of data track multiplicity N<sub>ch</sub> by MC Glauber model or Negative Binominal Distribution (Γ-fit) with free parameters

- Extract P(b | N<sub>ch</sub>)
- Still need to correct for trigger efficiency, changes in central tracker (FST, GEM) efficiency



#### **Centrality selection in forward detectors: hodoscope and FHCal**

BM@N

Color bins – 10% of number of events in each bin



#### **Current status of the Xe data analysis**



- Optimization of the central tracking algorithm based on Vector Finder (Si+GEM)
- alignment of the central and outer tracker
- implementation of a newly measured magnetic field map
- few iterations to update / improve performance of the central track finder
- first processing of reconstruction of full set of events is done using DIRAC at MLIT Tier-1,2
- $\rightarrow$  Reasonable signals of  $\Lambda$  and  ${\rm K^0}_{\rm S}$
- Centrality measurement with forward detectors:
- pile-up corrections of fragment hodoscope signals (beam area) are done

#### Tasks to be completed for physics analyses:

- Particle identification in ToF-400 and ToF-700 detectors:
- finish alignment of ToF-detectors with central tracks in magnetic field
- need calibration of time of flight to squeeze proton mass peak
- Topics of physics analyses:
- analysis of production of Λ, Ξ- hyperons, K<sup>0</sup><sub>S</sub>, K±, π± mesons, light nuclear fragments in Xe+CsI interactions;
- analysis of collective flow of protons,  $\pi \pm$ , light nuclear fragments
- search for light hyper-nuclei  $_{\Lambda}H^3$  ,  $_{\Lambda}H^4$

# Outer tracker: 2 big 2.1x1.5 m<sup>2</sup> cathode strip chambers installed



Team: A.Vishnevsky R.Kattabekov A.Makankin A.Morozov E.Martovitsky S.Piyadin V.Spaskov

1<sup>st</sup> big CSC was installed and operated in the Xe run 2<sup>nd</sup> big CSC has been tested with cosmic particles and installed for the next experimental run



# **High Granularity Neutron detector**



M.Kapishin

BM@N experiment

#### Plans for BM@N upgrade and physics runs



In case of a physics run in the Xe beam in 2024-2025 (depends on the status of the NICA collider construction):

- $\rightarrow$  beam energy scan in the range of 2-3 AGeV
- $\rightarrow$  same central tracker configuration based on silicon FST and GEM detectors,
- $\rightarrow$  additional 1<sup>st</sup> vertex plane of silicon STS detectors
- $\rightarrow$  complete replacement of outer drift chambers with cathode strip chambers

Preparations for a physics run with the Bi beam

- Further development of the central tracker is foreseen: installation of additional stations of silicon detectors
- It is planned to put into operation a 2-coordinate (X/Y) neutron detector of high granularity to measure neutron yield and collective flow

# Thank you for attention!

**M.Kapishin** 

#### **GEM** hit reconstruction: 7 stations + small **GEM** profile meter



#### **GEM Hits**



1

## 2-coordinate Si-plane based on STS modules



A new Si-plane based on STS modules to be installed between the **Target** and **Forward Si-Tracker**. Motivation: to improve track and momentum resolution for the low-momentum particles



BM@N setup inside the magnet

Sensitive area of Si-plane

Plan to install and commission the new Si plane in fall 2024

# **Coalescence factors B<sub>2</sub> and B<sub>3</sub>**

$$E_A \frac{d^3 N_A}{dp_A^3} = B_A \left( E_p \frac{d^3 N_p}{dp_p^3} \right)^Z \left( E_n \frac{d^3 N_n}{dp_n^3} \right)^{A-Z}$$
$$\approx B_A \left( E_p \frac{d^3 N_p}{dp_p^3} \right)^A, \qquad B_A \propto V_{\text{eff}}^{1-A}$$

B<sub>A</sub> is the coalescence parameter that characterizes the probability of nucleons to form nucleus A.

$$\Rightarrow B_A = d^2 N_A / 2\pi p_T dp_T (A) dy / [d^2 N_p / 2\pi p_T dp_T (p) dy)]^A, A = 2(d), 3(t)$$

Coalescence parameter B<sub>A</sub> depends on the nucleus mass number A, collision system, centrality, energy, and transverse momentum

$$B_2 = \frac{3\pi^{3/2} \langle \mathcal{C}_{\mathrm{d}} \rangle}{2m_t \,\mathcal{R}_{\perp}^2(m_t) \,\mathcal{R}_{\parallel}(m_t)} \, e^{2(m_t - m) \left(\frac{1}{T_{\mathrm{p}}^*} - \frac{1}{T_{\mathrm{d}}^*}\right)}$$

NA49: B<sub>2</sub> for deuterons



#### NA49: B<sub>3</sub> for tritons, Pb+Pb



# Directed and elliptic flow at BM@N

BM@



- Good agreement between reconstructed and model data
- Approximately 250-300M events are required to perform multi-differential measurements of  $v_{\rm n}$