A Large Ion Collider Experiment

Report on JINR-ALICE team activity in 2023

E. Rogochaya

59th Program Advisory Committee 22 January 2024

A Large Ion Collider Experiment

The ALICE Collaboration

JINR-ALICE group:

- ✓ 12 physicists (5 analysis, 7 PHOS)
- ✓ 1 PhD student
- ✓ 1 expert for ROOT software upgrade and GRID computing management

E. Rogochaya on behalf of JINR-ALICE group

PAC2024

Peru, 5, 0% Pakistan, 37, 2%

Norway, 40, 2%

Mexico, 53, 3%

Malta, 8, 0%

22 January 2024

Italy, 222, 11%

Indonesia, 16, 1%

Activities of JINR-ALICE group

- ✓ Ultra-peripheral p-Pb and Pb-Pb collisions: study of vector meson photoproduction
- ✓ Development of the thermal model of particle production in pp and A-A collisions
- ✓ GRID computing and software activities
- ✓ Participation in the ALICE maintenance and operation tasks
- ✓ PHOS upgrade

E. Rogochaya on behalf of JINR-ALICE group

ALICE detector

Actual (Run 3) configuration: ✓ Tracking and vertex: \circ TPC ACORDE | ALICE Cosmic Rays Detector o ITS AD | ALICE Diffractive Detector DCal Di-jet Calorimeter • MCH, MFT EMCal | Electromagnetic Calorimeter ✓ Particle identification: HMPID High Momentum Particle Identification Detector ITS-IB Inner Tracking System - Inner Barrel o TPC ITS-OB | Inner Tracking System - Outer Barrel 18 o TOF MCH | Muon Tracking Chambers MFT | Muon Forward Tracker Centrality determination \checkmark MID | Muon Identifier PHOS / CPV | Photon Spectrometer or veto: TOF | Time Of Flight T0+A | Tzero + A \circ V0 T0+C Tzero + C TPC | Time Projection Chamber o ZDC TRD | Transition Radiation Detector Veto: V0+ Vzero + Detector ZDC Zero Degree Calorimeter o AD

E. Rogochaya on behalf of JINR-ALICE group

Femtoscopic K⁺K⁻ correlation analysis in p-Pb at 5.02 TeV

$C = FSI \cdot \lambda + PHI + 1$

- √ λ=1 (and test λ(K+K-)=λ(K±K±)~0.3)
 ✓ FSI Lednický-Lyuboshits model with radius from identical charged kaon study
 ✓ PHI φ peak: convolution of Gaussian (2 MeV) and Breit-Wigner scaled to height of peak in experimental CF
 - ✓ Small sizes → check the Lednický-Lyuboshits model

- ✓ First results for K^+K^- CF in p-Pb at 5.02 TeV.
- ✓ Significant contribution of the φ peak in the region of the strong and Coulomb FSI in comparison to the Pb-Pb data at 2.76 TeV [Phys.Rev.C107 (2023) 054904].
- \checkmark Wide Coulomb FSI in comparison to the Pb-Pb analysis.
- ✓ Description looks better for $\lambda = 1$.

PAC2024

K.Mikhaylov

Vector meson photoproduction in UPC p-Pb at 8.16 TeV

Exclusive J/ ψ photoproduction cross section off protons measured as a function of the centre-of-mass energy of the photon-proton system $W_{\gamma p}$:

- Measurements by ALICE are compatible with the values measured by HERA and LHCb.
- ✓ No deviation from a power law is observed up to about 700 GeV.
- ✓ Future UPC measurements by ALICE will explore the higher W_p range.

✓ Published in [ALICE, Phys.Rev.D108 (2023) 11, 112004].

- Measurements by ALICE are compatible with the values measured by HERA.
- ✓ At high W_p, where the gluon saturation regime is expected, the models predict that the ratio vanishes.

Ratio of dissociative to exclusive J/ψ photoproduction cross sections:

E. Rogochaya on behalf of JINR-ALICE group

Thermal model of particle production in pp and A-A collisions

Modification of the previous model [S.Grigoryan, Eur.Phys.J.A57 (2021) 12, 328].

Model consists of 3 components:

- 1) Boltzmann-Gibbs thermal distribution $\xrightarrow{\text{for}}$ flow effect
- 2) Tsallis distribution $\xrightarrow{\text{for}}$ resonance decays
- 3) power-law form $\xrightarrow{\text{for}}$ QCD hard processes

 N_{part} - number of the participant nucleons, calculated in the Glauber model

A - atomic number

- Calculations are in a very good agreement with experimental (ALICE and lower energy) data.
- ✓ Limited value of each curve at $x=(N_{part}-2)/2A=0$ is equal to the charged particle multiplicity density at midrapidity in pp collisions at the corresponding energy.

S.Grigoryan

E. Rogochaya on behalf of JINR-ALICE group

PAC2024

GRID computing and software activities

The JINR ALICE GRID is a part of 7 Russian ALICE GRID Tier 2 Centers (RDIG – Russian Data Intensive Grid).

The resources of JINR GRID Farm:
✓ 13500 cores CPU (40% of the RDIG)
✓ 2000 Tb Disk-SE (64% of the RDIG)

JINR provides and increases storage (Tb) and computing (CPU cores) resources for ALICE.

E. Rogochaya on behalf of JINR-ALICE group

PAC2024

Conferences

 \checkmark V.Pozdnyakov, "Exclusive and dissociative J/ ψ photoproduction off protons with ALICE", XXX International Workshop on Deep-Inelastic Scattering and Related Subjects, Michigan SU, USA, March 27-31, 2023.

 E.Rogochaya, "Studying the size of the emitting source of particles and their strong interaction using femtoscopy", The European Physical Society Conference on High Energy Physics (EPS-HEP), Hamburg, Germany, August 21-25, 2023.

 V.Pozdnyakov, "Vector meson photoproduction in UPC with ALICE", 25th International Spin Symposium (SPIN 2023), Durham, USA, September 24-29, 2023.

ALICE publications with key contribution from the JINR-ALICE group: ALICE

- ✓ "Investigation of K⁺K⁻ interactions via femtoscopy in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV at the LHC", ALICE Collaboration (S.Acharya et al.), Phys.Rev.C107 (2023) 054904.
- ✓ "Femtoscopic correlations of identical charged pions and kaons in pp collisions at $\sqrt{s} = 13$ TeV with event-shape selection.", ALICE Collaboration (S.Acharya et al.), arXiv:2310.07509 [hep-ph].
- ✓ "Photoproduction of K⁺K⁻ pairs in ultra-peripheral collisions", ALICE Collaboration (S.Acharya et al.), arXiv:2311.11792 [nucl-ex].
- ✓ "Constraining the KN coupled channel dynamics using femtoscopic correlation at the LHC", ALICE Collaboration (S.Acharya et al.), Eur.Phys.J.C83 (2023) 340.
- "Common femtoscopic hadron-emission source in pp collisions at the LHC", ALICE Collaboration (S.Acharya et al.), 2311.14527 [hep-ph].
- ✓ Exclusive and dissociative J/ ψ photoproduction, and exclusive dimuon production, in p-Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV, ALICE Collaboration (S.Acharya et al.), Phys.Rev.D108 (2023) 11, 112004.

Other scientific activities:

- K.Mikhaylov, E.Rogochaya and V.Pozdnyakov participate actively in Internal Review Committees (IRC) of various ALICE publications.
- ✓ JINR Institute Review of one of the ALICE publications.
- ✓ Participation in the ALICE central shifts (73).

A Large Ion Collider Experiment

PWO₄ monocrystal and 3-SiPM (Hamamatsu S14160-6015) + 1-SiPM (Hamamatsu MPPC S14160-6010) 2-channel photodetector:

PHOS

Resolution for the difference between time stamps from signals in neighboring crystals:

Voltage dependence of picosecond laser pulse amplitude for irradiated and nonirradiated SiPMs:

- Excellent time resolution of 100 ps was achieved for 2 GeV energy release.
- ✓ Good energy resolution, up to 2%.
- ✓ First test: Chinese NDL SiPM EQR15 11-6060D-S (new technology, 3 times cheaper) compared to Hamamatsu MPPC S14160-6015.
 Irradiation did not change the response of the detectors to light pulses.

E. Rogochaya on behalf of JINR-ALICE group

PAC2024

Summary

✓ JINR-ALICE team

- carries out successfully physical analyses of experimental data on femtoscopic correlations in pp, p-Pb and Pb-Pb
- studies vector meson photoproduction in ultra-peripheral p-Pb and Pb-Pb
- o constantly improves the three-component theoretical model of particle production
- ✓ All analyses results were reported at ALICE meetings and international conferences, and the finished ones were prepared for publication in peer-reviewed journals.
- ✓ JINR ALICE GRID facility continues to provide stable computing operation and steady increase of its capacity.
- ✓ PHOS: Excellent time resolution of $140 \rightarrow 100$ ps was achieved for 1-2 GeV energy release.

Plans for 2024

- ✓ Publish paper on 1D and 3D femtoscopic analyses for $K^{\pm}K^{\pm}$ correlations in Pb-Pb collisions at 5.02 TeV.
- ✓ Publish paper on 1D and 3D femtoscopic analyses for $K^{\pm}K^{\pm}$ correlations in p-Pb collisions at 5.02 TeV.
- ✓ Continue 1D femtoscopic analysis for K^+K^- pairs in p-Pb collisions at 5.02 TeV.
- ✓ Finalize the analysis of ρ^0 states in 4-pion coherent photoproduction in ultra-peripheral Pb-Pb collisions at 5.02 TeV and prepare a publication.
- ✓ Start the analysis of ρ^0 meson coherent photoproduction in ultra-peripheral p-Pb collisions at 5.02 TeV.
- ✓ ALICE GRID support in the JINR computing system.
- ✓ Participate in the ALICE shifts and service tasks.
- ✓ Prepare a publication on the new version of Thermal model of particle production in A-A collisions.
- ✓ Prepare photodetectors and electronics for 30 cells of the PHOS calorimeter and perform measurements on the SPS CERN test electron beam in the range 10-150 GeV of electron energies.

THANK YOU FOR YOUR ATTENTION!

E. Rogochaya on behalf of JINR-ALICE group

Backup: ALICE schedule

E. Rogochaya on behalf of JINR-ALICE group

PAC2024

Backup: Ultra-Peripheral Collisions

- ✓ UPC occur when particles/ions collide at impact parameter *b* greater than sum of nuclear radii → UPC are γ -*induced reactions*.
- ✓ Large charges of colliding ion \rightarrow production of huge γ fluxes.

 \leftarrow elastic J/ ψ production in which the proton stays intact

proton-dissociative J/ψ production in which the proton dissociates to a low mass excited state with mass $M_Y > m_p \rightarrow$

✓ In *γ*-induced reactions, γ can be represented as a coherent superposition of hadronic fluctuations (ρ , ω , φ , J/ ψ , etc.) that subsequently interact with the target.