Preparation of the SRC experiment

Maria Patsyuk

PAC Jan 22th 2024

1

HyperNIS

Quasi-free breakup of tensor polarized deuterons in exclusive kinematics

~ 90° c.m. scattering at 6 GeV/n d energy

Ensuring large momentum transfer and interaction with a compact object

Studies of pre-existing tight configurations of nucleons

1950s – experiments with direct knockout of d, and later ³He, ⁴He

Fluctuons - tightly correlated groups of nucleons in nuclei ("quark bags", "clusters")

Cumulative effect

Azhgirey L.S. et al, ZhETP, 33 (1957), 1185

Fragmentation of polarized d measured along the beam

Curves show results of calculations with the Nijm-I deuteron wave function in the framework of multiple scattering: with (bold solid line) and without quark exchange (short-dashed line); and IA: with (long dashed line) and without quark exchange (dotted line).

Reminder: existing data on deuteron breakup (inclusive) p(d,p)X invariant cross section;

protons are emitted at 0 degree.

Kobushkin, Phys. Lett. B 421 1998

Short-Range Correlations (SRCs) – close proximity nucleon pairs

Momentum space: high relative and low c.m. momenta, compared to the Fermi momentum (p_F ~ 250 MeV/c)

$$P_1 > p_F \qquad P_2 > p_F \qquad P_1 \sim P_2$$

SRC motivates tensor polarized d measurements

SRC 2018 motivates polarization measurements

The quasi-free mechanism of the nucleon knockout (or impulse approximation) dominates in p+{NN}→p+N+N

This can be checked by measuring T_{20} (q_{rel}) in p+d \rightarrow p+p+n and the same kinematics

Yu. Uzikov

 A_{zz} for hard quasi-free breakup of the deuteron: $\vec{d}(p, 2p)n$

$$A_{zz} = \frac{(\sigma_{-} + \sigma_{+} - 2\sigma_{0})}{\sigma_{unpol}}$$

 $\sigma-, \sigma+, \sigma0$ – cross sections for different tensor polarization states

- $|t| \& |u| > 1 \text{ GeV}^2$
- $60^{\circ} < \theta_{\rm cm}$
- Two-arm acceptance: $20^{\circ} < \theta_{lab} < 45^{\circ}$; $-20^{\circ} < |\phi_{lab}| < 20^{\circ}$
- $p_{miss} > 0.25 \text{ GeV/c.}$

 A_{zz} – better sensitivity to admixture of small w.f. component than σ

$$A_{zz} = \frac{(\sigma_{-} + \sigma_{+} - 2\sigma_{0})}{\sigma_{unpol}} \qquad \qquad \sigma \sim u(k)^{2} + w(k)^{2}$$

 $\sigma-, \sigma+, \sigma0$ – cross sections for different tensor polarization states

$$A_{zz} \sim \frac{\frac{1}{2}w^2(k) - u(k)w(k)\sqrt{2}}{u^2(k) + w^2(k)}$$

L. Frankfurt and M. Strikman, Phys.Rept. 160, 235 (1988) V. G. Ableev, E. Strokovskii et. al, Pis'ma Zh. Exp. Teor. Fiz. 47, 11 (1988)

What can we study?

- 1. Relativistic description of the bound system
- 2. Ratio between S- and D-waves of the deuteron
- 3. Final state interactions (FSI) in the high-momentum region
- 4. Non-nucleonic deuteron components in polarization measurements

Relativistic description of the bound compact system

Ratio between S- and D-waves of the deuteron

-2.0

0

0.25

0.50

 $p_{\rm miss}$ (GeV/c)

0.75

description of the bound system!

1.00

Impact of FSI inside d

A. Larionov

IA = Impulse Approximation GEA = Generalized Eikonal Approximation

SRC event rate estimation

GCF-based simulation Focus on the deuteron high-momentum tail:

- $|t| \& |u| > 1 \text{ GeV}^2$
- $60^{\circ} < \theta_{\rm cm}$
- Two-arm acceptance: $20^{\circ} < \theta_{lab} < 45^{\circ}$; $-20^{\circ} < |\phi_{lab}| < 20^{\circ}$
- $p_{miss} > 0.25 \text{ GeV/c.}$

Beam intensity of 10^6 d/s

~250 k events / week with P_{miss} > 250 MeV/c

Total event rate estimation

urQMD generator:

At 10⁶ deuteron/s ~200 coincidence triggers/s (4/5 with pions)

Trigger rate below the DAQ limit

Experimental setup

LH2 target

Polarimeter

Neutron detector

At least 2 planes of coordinate detectors on each arm with resolution of 200 um

Position beam detectors

Time / dE beam counters

2 MWDC chambers for each arm (6 planes per chamber)

Large MWDCs at IMP-EFT

Active area	80 cm x 60 cm			
Quantity	5			
Position resolution (σ)	230 um			
Efficiency (MIP particle)	~97%			

6 plans/det: u1u2v1v2x1x2

Table 1

6 det available including electronics and experts – need detectors back Fragile - need carefull shipment

(build and ship 4 new ~100K euro)

Max singles rates 10⁴ cps

Need agreement to ship MWDC back to China

Experimental area

- 1. Move walls and HyperNIS container
- 2. A few weeks of tensor polarized deuteron beam 6 GeV/n 10^6 d/s
- 3. Radiation protection and approval of the area for the above
- 4. TOF/CAL and other detectors installation
- 5. 1 engineer 2 tech

TOF-CAL

- 1. Installation at beam height floor enforcement
- 2. Power supplies and cables
- 3. New electronics + new connectors / signal cables

Beam time counters + trigger

- 1. Reconstruct /check/install/operate the 2022 counters detector group support
- 2. Develop, operate trigger Trigger group support

<u>DAQ</u>

- 1. 70 channels QTDC for the TOF array and beam counters
- 2. 200 Channels ADC for the CAL
- 3. 50 Channels QTDC for the n array
- 4. Integrating the MWDC output to the data stream
- 5. DAQ group support

Summary:

- $\vec{d}(p, 2p)n$ exclusive measurement in SRC kinematics aiming at A_{ZZ} at high Pmiss
- Two-arm spectrometer with detectors and electronics partly available, JINR LH target + DAQ, new MWDC from China
- Can be done (assuming a contribution from JINR) in the next couple of years complementing the world-wide SRC effort (ALERT with polarized target at JLab)
- Theory support: Yu. Uzikov, A. Larionov (JINR)

M. Strikman, M. Sargsian (USA)

Thank you!

SRC manpower

Category of personnel	Full name	Division	Amount of FTE
research scientists	Atovullaev T. Nepochatykh S. Patsyuk M. + HyperNIS collaborators + JINR collaborators from other groups	VBLHEP VBLHEP VBLHEP VBLHEP	1 1 1 1
Engineers (= students)	Atovullaeva A. Bochkova A.	VBLHEP VBLHEP	1 1
Main engineer Two technicians	Needed!!!		3
Total:			7 (10)

Cost estimate for SRC

Expenditures, resources, funding sources	Cost (thousands of US dollars)	Cost/Resources, distribution by years				
		1 st y	2 nd y	3 rd y	4 th y	5 th y
International cooperation	50	10	10	10	10	10
Materials (not including DAQ*)		?	?	?	?	?
Commissioning						
R&D contracts with other research organizations						
Software purchasing	10	2	2	2	2	2
Design/construction						
- the amount of FTE,		10	10	10	10	10
- accelerator/installation,		0	0	1500	0	0

* Depending on sharing existing at JINR equipment