

BM@N experiment at NICA/Nuclotron: scientific program and first results

M.Kapishin

M.Kapishin

NICA Heavy Ion Complex

BM@N: heavy ion energy 1- 3.8 GeV/n, beams: d to Bi, Intensity ~few 10⁶ Hz (Bi)

Heavy Ion Collision Experiments

BM@N: √s_{NN}= 2.3 - 3.3 GeV √s_{NN}= 4 - 11 GeV MPD:

BM@N competitors:

HADES BES (SIS): Au+Au at $\sqrt{s_{NN}}$ = 2.42 GeV, Ag+Ag at $\sqrt{s_{NN}}$ = 2.42 GeV, 2.55 GeV.

STAR BES (RHIC): Au+Au at $\sqrt{s_{NN}}$ = 3-200 GeV

Fixed target (BM@N) vs Collider experiment (MPD)

 $\sqrt{s} \sim \sqrt{2m(E_{beam}+m)} \rightarrow measurements$ at low and middle energies

Higher acquisition rate ~ capacity of FEE electronics and DAQ

Cover beam fragmentation and part of central range, no target fragmentation

Limited reaction plane resolution Various combinations of beam and target nuclei

Easy access to detectors

 $\sqrt{s} = 2E_{beam} \rightarrow measurements at high energies$

Limited acquisition rate ~ Luminosity of colliding beams

Cover central and part of fragmentation range of colliding beams

Good reaction plane resolution (axial symmetry) Typically same nuclei of colliding beams Very limited access to detectors

EOS of symmetric and asymmetric nuclear matter

BM@N experiment

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

EOS: relation between density, pressure, temperature, energy and isospin asymmetry

$$\mathsf{E}_{\mathsf{A}}(\rho,\delta) = \mathsf{E}_{\mathsf{A}}(\rho,0) + \mathsf{E}_{\mathsf{sym}}(\rho) \cdot \delta^2$$

with $\delta = (\rho_n - \rho_p)/\rho$ E/A(ρ_o) = -16 MeV

Curvature defined by nuclear incompressibility: $K = 9\rho^2 \ \delta^2(E/A)/\delta\rho^2$

Study symmetric matter EOS at ρ =3-5 ρ_0 \rightarrow elliptic flow of protons, mesons and hyperons

 \rightarrow sub-threshold production of strange mesons and hyperons

 \rightarrow extract K from data to model predictions

► Constrain symmetry energy E_{sym}

 \rightarrow elliptic flow of neutrons vs protons

 \rightarrow sub-threshold production of particles with opposite isospin

M.Kapishin

BM@N physics case and observables

The QCD matter equation-of-state at high densities

> particle production at (sub)threshold energies via multi-step processes

Example: subthreshold K⁺ production at GSI

M.Kapishin

Time (x axis), transverse (y axis) and longitudinal (z axis) dynamics of Au+Au collision

Study of EoS: Collective flow of of identified particles

> collective flow of identified particles ($\Pi, K, p, \Lambda, \Xi, \Omega, ...$) driven by the pressure gradient in the early fireball

 \rightarrow Nuclear incompressibility: K = 9p² δ^{2} (E/A)/ δ p²

Azimuthal angle distribution: $dN/d\phi \propto (1 + 2v_1 \cos \phi + 2v_2 \cos 2\phi)$

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

M.Kapishin

Directed and elliptic flow at BM@N

BM@

- Good agreement between reconstructed and model data
- Approximately 250-300M events are required to perform multi-differential measurements of $v_{\rm n}$

Heavy-ions A+A: Hypernuclei production

BM@N

In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities

D Maximal yield predicted for $\sqrt{s}=4-5A$ GeV (stat. model) (interplay of Λ and light nuclei excitation function)

BM@N energy range is suited for search of hyper-nuclei

M.Kapishin

Baryonic Matter at Nuclotron (BM@N) Collaboration:

5 Countries, 13 Institutions, 217 participants

- University of Plovdiv, Bulgaria
- St.Petersburg University
- Shanghai Institute of Nuclear and Applied Physics, CFS, China;
- Joint Institute for Nuclear Research;
- Institute of Nuclear Research RAS, Moscow
- NRC Kurchatov Institute, Moscow combined with Institute of Theoretical & Experimental Physics. NRC KI. Moscow

- Moscow Engineer and Physics Institute
- Skobeltsyn Institute of Nuclear Physics, MSU, Russia
- Moscow Institute of Physics and Technics
- Lebedev Physics Institute of RAS, Moscow
- Institute of Physics and Technology, Almaty
- Physical-Technical Institute
 Uzbekistan Academy of Sciences, Tashkent
- High School of Economics, National Research University, Moscow

M.Kapishin

BM@N experiment

Production of π^+ , K^+ , p, d, t in 3.2 AGeV argon-nucleus interactions at the Nuclotron

BM@N

Deuterons: dN/dy dependence on y

- dN/dy spectrum softer in interactions with heavier target
- DCM-SMM and PHQMD models describe data shape, but are lower in normalization by factor 4

M.Kapishin

Xe¹²⁴ + Csl interactions: main trigger cover centrality < 70-75% (85% events) min bias trigger (7% events), beam trigger (3% events)

 \rightarrow Collected 507M events at 3.8 AGeV, 48M events at 3.0 AGeV

BM@N detectors for Xe+CsI run

3 Silicon beam tracking detectors

Outer tracker: Cathode Strip Chambers \rightarrow 4 CSC of 106x106 cm2

Outer tracker group

Big CSC 220x145 cm2

BM@N experiment

Beam profile meter with Si detector and positioning mechanics

Forward hodoscope in front of FHCAL

Forward Silicon Detectors for Xe+CsI run

BM@N

Setup for FSD tests with cosmic rays

Installed FSD module

FSD support mechanics

Assembled FSD half station of 7 detectors

Cosmic ray X/Y profile of FSD half station

► All 48 modules and 4 FSD stations with 6, 10,14,18 modules are assembled, tested and installed

BM@N tracking detector installation for Xe+CsI run

Big CSC chamber

GEM detectors installed in magnet

Carbon vacuum beam pipe

Forward Si tracker detectors in front of GEM detectors

Vacuum boxes for beam detectors

GEM hit reconstruction: 7 stations + small **GEM** profile meter

GEM Hits

1

Data recording, simulation, reconstruction and analysis

Xe+ CsI data : $\Lambda \rightarrow p\pi^-$, $K^0_{\ s} \rightarrow \pi^+\pi^-$, $\Xi^- \rightarrow \Lambda\pi^-$

Life time is in agreement with PDG values: 0.2632 ns for Λ , 0.0895 ns for K⁰_s

Xe+CsI data: π+-, K+-, p, He3, d, t identification

Total β vs rigidity

Centrality from track multiplicity and forward detectors BM@N

Parametrization of data track multiplicity N_{ch} by MC Glauber model or Negative Binominal Distribution (Γ -fit) with free parameters

 \rightarrow Γ -fit and MC-Glauber fit are in agreement

Independent method: centrality definition from Z² in beam hodoscope and energy in FHCal

Status of data analysis and plans for next physics runs

Topics of physics analyses:

- analysis of production of Λ, Ξ- hyperons, K⁰_S, K±, π± mesons, light nuclear fragments, neutrons in Xe+CsI interactions;
- analysis of collective flow of protons, π ±, light nuclear fragments
- search for light hyper-nuclei ${}_{\Lambda}H^3$, ${}_{\Lambda}H^4$

Physics run in the Xe beam in 2024-2025

 \rightarrow beam energy scan in the range of 2-3 AGeV

Preparations for a physics run with the Bi beam

- Further development of the central tracker is foreseen: installation of additional stations of silicon micro-strip detectors
- It is planned to put into operation a 2-coordinate (X/Y) neutron detector of high granularity to measure neutron yield and collective flow

Possible contributions of new participants:

- Analysis of recorded Xe+Csl interactions (with perspective for publications and PhD)
- Software development (under guidance of the software coordinator)

Beam parameters and setup at different stages of BM@N experiment

BM@N

Year	2016	2017 spring	2018 spring	2023	2025 and later
Beam	d(↑)	С	Ar	Xe	Bi
Max.inten sity / spill	0.5M	0.5M	0.5M	1M	1.5M
Trigger rate, spill	5k	5k	8k	10k	15k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 forward Si planes	7 GEM full planes + 4 forward Si planes	7 GEM full planes + forward Si + STS planes
Experiment al status	technical run	technical run	technical run+physics	stage1 physics	stage2 physics

Thank you for attention!

M.Kapishin

BM@N heavy ion program goals and observables BM@N

- 1. BM@N energy range is very promising (EOS, symmetry energy, hypernuclei)
- 2. Sensitive probes have to be measured multi-differential (p_T , y) and as function of beam energy (2 4 GeV/u)
- EOS for high-density symmetric matter:
 - Collective flow of protons and light fragments in Au+Au collisions: Centrality, event plane, identification of fragments
 - Ξ⁻ (dss) and Ω⁻ (sss) hyperons: Yields, spectra, p_T vs. y from Au+Au and C+C collisions
- > Symmetry energy at high baryon densities:
 - Particles with opposite isospin I₃=±1: $\Sigma^{+}(uus)/\Sigma^{+}(dds)$
 - Proton vs neutron collective flow (need highly granulated neutron detector)
- \succ Λ -N and Λ -NN interactions
 - Hypernuclei: Yields, lifetimes, masses of ³_AH, ⁴_AH, ⁵_AH, ⁴_AHe, ⁵_AHe, ...
- > Phase transition from hadronic to partonic matter:
 - Deconfinement: excitation function of Ξ^- (dss), Ω^- (sss) (EOS observables)
 - Transition to scaling of collective flow of mesons / hyperons with number of quarks (partonic matter)
 - Critical endpoint: higher order moments of the proton multiplicity distribution

M.Kapishin