

Ускорительный комплексе ЛЯР ОИЯИ в 2024 году. Некоторые аспекты прикладных исследований.

FLNR main activities

*Flerov Laboratory of Nuclear Reactions was founded in the Joint Institute for Nuclear Research in 1957.

FLNR carries out research in the field of heavy ion physics in three main directions:

- Synthesis and properties of nuclei at the stability limits
- Accelerator complex of ion beams of stable and radioactive nuclides (DRIBs-III)

Ri

- Radiation effects and physical bases of nanotechnology, radioanalytical and radioisotope investigations at the FLNR accelerators

1 H H H H H H H H H H H H H	IDEAC Periodic Table of the Elements Ver 1 1 1 Sympositive 1	4 Вискиут Полоний Астат КП 9 2223 208 98 224 208 98 225 209 98 226 222 01 115 MC 26 Uuh 117 Uus 118 Og 206 92-03 92-03 117 Uus 118 Og 206 92-03 26 94-04 293 22-01 07-04 206 92-03 117 Uus 118 Og 206 92-03 110 117 Uus 07-04 285 92-03 110 12-05 07-04 294 285 92-03 12-05 12-05 07-04 294 286 92-03 12-05 12-05 12-05 285 92-03 12-05 12-05 12-05
6245101 Dollar 10211 10735 87 68 80-103 Fr Ra 40-103 Francian cellan 400-103	 матки виявали видели пекила очини избил райтих (ий массо вида и посто види посто вида и посто вида и посто вида и посто вида и посто	TO Columna Tyrani MirringGold Second
VITERNATIONAL UNION OF URE AND APPLIED CHEMISTRY	BT MS MS MC PI CO PI CO PI CO PI PI CO PI PI CO PI PI CO PI PI<	2016

For notes and updates to this table, see www.upac.org. This vestion is doned 28 histoamber Copylight @ 2016 UPAC, the international Linter of Pare and Applied Chemistry.

FLNR accelerating complex in 2024.

4 cyclotrons and Microtron

Beam operation time : ~ 6 000 hours/year/per machine of beams **ON** physical targets

MT-25

FLNR accelerating complex in 2023.

DC280

Year	Total work time	Ions
2018	First Beam	⁸⁴ Kr
2019	3377	¹² C, ⁴⁰ Ar, ⁴⁸ Ca, ⁸⁴ Kr
2020	3705	⁴⁰ Ar, ⁴⁸ Ca, ⁴⁸ Ti
2021	5357	⁴⁸ Ca, ⁴⁸ Ti , ⁵² Cr
2022	6037	⁴⁰ Ar, ⁴⁸ Ca, ⁴⁸ Ti , ^{52,54} Cr

Main parameters of the DC-280

parameters	design	realized					
Ion source	DECRIS-PM - 14 GHz on the HV platform (Umax=60kV)						
Injecting beam potential	Up to 80 keV/Z	38,04 - 72,89 keV/Z					
A/Z	4÷7.5	4,44 (40Ar ⁺⁷) - 6,86 (48Ca ⁺⁷)					
Energy	4+8 MeV/n	4,01 – 7 MeV/n					
Ion (for DECRIS-PM)	4-136	12 (12C+2) - 84 (84Kr+14)					
Intensity (A~50)	>10 рµА	10,43 рµА (49Ar+7), 7,7 рµА (48Ca+10)					
Magnetic field level	0.6+1.3 T	0.8+1.23 T					
K factor	280						
Dee voltage	2x130 kV	130 kV					
Power of RF generator		2x30 kW					
Flat-top dee voltage	2x13 kV	13 kV					
Power of Flat-top generator	2x2 kW						
Emittance	less than 30 π mm ⁻ mrad						
Accelerator effectivity	>50%	51,9 % (48Ca+10 5 MeV/n 5 pmkA)					

Profile of ⁵⁴Cr¹⁰⁺beam in

transport channel

OINT INSTITUTE

NUCLEAR RESEARCH

lon beam

extraction

Stability of the Ca-48 beam during 1 month of work

(T3FC6) I (T3FC7)

Main RF-

resonator

DC-280. The basic facility of the Superheavy Element Factory — DC-280 cyclotron — provided 5357 h of beam-time for research in 2021. During this period, the novel gas-filled separator GFS-2 was employed for conducting experiments on the synthesis of element 114 (flerovium) in the ²⁴²Pu + ⁴⁸Ca reaction, element 115 (Moscovium) in the ²⁴³Am + ⁴⁸Ca reaction, and element 112 (copernicium) in the ²³⁸U + ⁴⁸Ca reaction. The experiment on the synthesis of Mc lasted for 1820 h; Fl, for 410 h; and Cn, for 810 h. The energy of ions extracted from the cyclotron could be smoothly varied, which was of particular importance for experiments conducted at the SHE Factory. Thus, the intensity of the beams of ⁴⁸Ca ions in experiments varied from 0.05 up to 7.7 pµA. Work on adjusting the acceleration modes for the ^{52,54}Cr¹⁰⁺ and ⁴⁸Ti⁹⁺ ions continued. The intensity of the accelerated ⁵²Cr beam reached 2.4 pµA, and the intensities of the beams of ⁵⁴Cr and ⁴⁸Ti ions were 2.2 and 1 pµA, respectively. In addition, preparations were complete for experiments at a new physics set-up GFS-3.

IOINT INSTITUTE

Системы	Список планируемых работ							
Аксиальная инжекция	Замена «теплого» ECR источника DECRIS-2 → DECRIS-2M							
	амена катушек основного магнита							
	Магнитные измерения							
Магнитная система циклотрона	Коррекция магнитного поля (компенсация первой гармоники)							
4	Установка долинных шиммов							
	Восстановление корректирующих катушек							
	Замена системы перемещения и контактных групп закорачивающих пласти резонаторов							
Ускоряющая система	Новая система автоподстройки частоты (емкостная)							
	Новая фидерная линия с системой согласования							
	Новые токовые пробники							
Оборудование циклотрона	Доработка системы вывода пучка							
	Система проверки положения центра орбиты пучка							
Вакуумная система	Замена оборудования на современное.							
	Замена вакуумного оборудования							
Каналы пучков	Новые элементы диагностики							
Система управления	Новая система управления							

График модернизации У-400M — MЦ-400

N⁰	Работы	2023	2024	2025	2026	2027	2028	2029			
	Модернизация У-400М→ МЦ-400	Модерниза	ция		Работ	га МЦ-400					

U400M

The cyclotron electromagnet with 4-meter diameter since pole 2020 under is reconstruction now that includes a replacement of magnet main coil, corrections of the magnetic field at the central region and at the extraction radius. For measurements and shimming of cyclotron field the magnetic mapping automatic system, based on 14 Hall probes, was created.

U-400M. As part of the U-400M cyclotron upgrade project, the main magnet coils were replaced with a new set-in collaboration with the OOO NPO GKMP, Bryansk. The novel components were connected to the power supply and cooling system; a magnetic field measuring system was installed.

Another major enhancement involved an upgrade of operational elements and manufacturing of novel components for the vacuum system and for the cooling and control systems of the U-400M cyclotron.

The start-up of U-400M is planned for the beginning of 2024.

График модернизации У-400М \rightarrow МЦ-400

N⁰	Работы	2023	2024	2025	2026	2027	2028	2029			
	Модернизация у-400м – мщ-400 Модернизация										

Main cyclotron parameters										
Parametersc	U400	U400R								
A/z range	5÷12	4÷12								
Magnetic field	1.93÷2.1 T	0.8÷1.8 T								
K factor	530÷625	100÷500								
RF modes	2	2, 3, 4, 5, 6								
Injection potential	10÷20 kV	10÷50 kV								
Ion energy range	3÷20 MeV/n	0.8÷27 MeV/n								
Number of sectors	4	4								
Number of dees	2	2								
Beam extraction	stripping	Stripping, deflector								
Power consuption	~1 MW	~0.4 MW								

- 1. Increasing the intensity of ion beams with mass $A\approx 50$ and energy ≈ 6 MeV/nucleon to 2.5 $\rho\mu A.$
- 2. Ensuring ion energy variation by 5 times, with an accuracy of $\Delta E/E{=}5^{*}10^{-3}$.
- 3. Reducing the induction of the average magnetic field from $1.9 \div 2.1$ T to $0.8 \div 1.8$ T.
- 4. Vacuum system upgrade. Vacuum improvement.
- 5. Ensuring the energy spread of the beam on the target 10^{-3} .

U-400. A wide variety of scientific and applied investigations in heavy-ion physics were conducted using the U-400 cyclotron. In 2023, the cyclotron provided 6595 h of beamtime. Most of the operation time was devoted to the implementation of the program focused on studying the beams of ²²N ions (SHELS set-up), ⁴⁶Ti ions (chemical set-up, SHELS), ⁴⁸Ca ions (CORSET, SHELS, MAVR), and ⁵⁶Fe ions (MAVR). In addition, experiments on accelerating ²³⁸U ions were carried out.

Applied studies (SEE tests and material science) were also conducted employing the U-400 cyclotron.

Создание новых экспериментальных установок

Работы в по модернизации У-400 \rightarrow У-400Р

N⁰	Работы	2023	2024	2025	2026	2027	2028	2029
	Физ.Установки	Проектиро	вание	Комплектаци	я Мо	онтаж, наладка		

U400 ===> U400R (Новый Экспериментальный Зал) Участок Проводки Ионопровода (УПИ)

114 Fleroviur

Назначение УПИ:

- Транспортировка ускоренного пучка
- Транзит коммуникаций из зд. 131 в НЭЗ

измерительные комнаты и серверные; 4-й этаж: источники питания физустановок.

Новый экспериментальный зал ЭлектроЦентроМонтаж

		Пн, 01.01.2024			2024							2025										2026							
			1	2	3 4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11 1	12	1 2	3	4	5
задача	НАЧАЛО	ЗАВЕРШЕНИЕ																											
Ростверк (1-4 захватки)	01.01.24	04.03.24																											
Устройство монолитных стен и перекрытий на отметке -0.100 - +24.000	01.02.24	30.12.24																											
Лестничные марши, наружная лестница. Стремянки	09.01.24	30.12.24																											
Утепление фундамента	01.08.24	15.09.24																											
Фахверковые колонны	01.08.24	30.12.24																											
Устройство перегородок	01.08.24	31.10.24																											
Проектные работы по прокладке инженерных сетей	01.01.24	01.03.24																											
Прокладка инженерных сетей	01.06.24	01.10.24																											
Отделочные работы внутри помещений	01.03.25	30.12.25																											
Отделочные работы снаружи здания	16.09.24	30.12.25																											
Монтаж инженерных систем здания	01.01.25	28.02.26																											
Монтаж АСРК и СБиС	01.05.25	28.02.26																											
Организация проездов	01.07.25	01.01.26																											
Благоустройство территории	01.07.25	01.01.26																											
ПНР работы	01.10.25	01.04.26																											

Первая свая 27.07.2023

Состояние на 08.04.2024

U400 ===> U400R

JIMR PLUID Dubna

Рабочие диаграммы У-400 и У-400Р

1. Система аксиальной инжекции

- новые внутренние соленоиды
- новый инфлектор

2. Магнитная система

OINT INSTITUTE

- новые корректирующие катушки
- новая центральная область

3. Новая вакуумная система

- новые высоковакуумные насосы (ТМН, Крио)
- модернизация линий форвакуумной откачки
- новые элементы системы диагностики

4. Новая ускоряющая система

- новые резонансные баки
- новые приводы закручивающей пластины
- новые системы подстройки частоты (триммер АПЧ)

5. Новая ВЧ система

- новые генераторы
- новая фидерная линия

6. Новая система вывода

- электростатический дефлектор
- магнитные каналы (3 шт.)
- 7. Система транспортировки пучка
 - новый канал в новый экспериментальный корпус
 - модернизация существующих каналов
- 8. Модернизация системы питания и управления
- 9. Модернизация системы охлаждения
- 10. Новая система СБИС и АСРК

- Увеличение интенсивности пучков ионов средних масс с энергией 6 МэВ/Нуклон до 2.5 ρµА
- 2. Плавная вариация энергии 2-20 МэВ/Нуклон с точностью ΔЕ/Е=5·10⁻³.
- 3. Уменьшение уровня магнитного поля 0.8-1.8 T
- 4. Ремонт и замена вышедших из строя систем

Typical ion beam parameters of U400 and U400R

JOINT INSTITUTE FOR NUCLEAR RESEARCH

	U400		U400R (expected							
Ion	Ion energy [MeV/u]	Output intensity	Ion	Ion energy [MeV/u]	Outpu intensi					
⁴ He ¹⁺	-	-	⁴ He ¹⁺	6.4 ÷ 27	23 pµ/					
⁶ He ¹⁺	11	3.107 pps	⁶ He ¹⁺	2.8 ÷ 14.4	(1-5)1					
8 He $^{1+}$	7.9		⁸ He ¹⁻²⁺	1.6 ÷ 27	10 ⁵⁻⁶ p					
¹⁶ O ²⁺	5.7; 7.9	5 pµA	16 O ²⁺	1.6 ÷ 8	19.5 p					
¹⁸ O ³⁺	7.8; 10.5; 15.8	4.4 pµA	¹⁶ O ⁴⁺	6.4 ÷ 27	5.8 pµ					
⁴⁰ Ar ⁴⁺	3.8; 5.1 *	1.7 pµA	⁴⁰ Ar ⁴⁺	1 ÷ 5.1	10 pµ/					
⁴⁸ Ca ⁵⁺	3.7; 5.3 *	1.2 pµA	⁴⁸ Ca ⁶⁺	1.6 ÷ 8	2.5 pµ					
⁴⁸ Ca ⁹⁺	8.9; 11; 17.7 *	Ι pμA	⁴⁸ Ca ⁷⁺	2.1 ÷ 11	2.1 pµ					
⁵⁰ Ti ⁵⁺	3.6; 5.1 *	0.4 рµА	⁵⁰ Ti ¹⁰⁺	4.1 ÷ 21	1 pµA					
⁵⁸ Fe ⁶⁺	3.8; 5.4 *	0.7 pµA	⁵⁸ Fe ⁷⁺	1.2 ÷ 7.5	1 pμA					
⁸⁴ Kr ⁸⁺	3.1; 4.4 *	0.3 pµA	⁸⁴ Kr ⁷⁺	0.8 ÷ 3.5	1.4 pµ					
$^{136}{\rm Xe^{14+}}$	3.3; 4.6; 6.9 *	0.08 pµA	¹³² Xe ¹¹⁻²²	0.8 ÷ 15	1-0.3 J					
			220 + + 27 444							

U400R (expected)						
Ion	Ion energy [MeV/u]	Output intensity				
⁴ He ¹⁺	6.4 ÷ 27	23 pµA **				
⁶ He ¹⁺	2.8 ÷ 14.4	(1-5)10 ⁹ pps				
⁸ He ¹⁻²⁺	1.6 ÷ 27	10 ⁵⁻⁶ pps				
16 O ²⁺	1.6 ÷ 8	19.5 pµA **				
¹⁶ O ⁴⁺	6.4 ÷ 27	5.8 pµA **				
⁴⁰ Ar ⁴⁺	1 ÷ 5.1	10 рµА				
⁴⁸ Ca ⁶⁺	1.6 ÷ 8	2.5 pµA				
⁴⁸ Ca ⁷⁺	2.1 ÷ 11	2.1 рµА				
⁵⁰ Ti ¹⁰⁺	4.1 ÷ 21	1 pμA				
⁵⁸ Fe ⁷⁺	1.2 ÷ 7.5	1 pμA				
84 Kr 7+	0.8 ÷ 3.5	1.4 pµA				
¹³² Xe ¹¹⁻²²	0.8 ÷ 15	1-0.3 pµA				
238 U 27-44+	1.5 ÷ 15	1-0.1 pµA				

Система вывода ускоренного пучка:

Система транспортировки ускоренного пучка:

parameters							
Energy range	5 to 25 MeV						
Average beam current	20 mkA						
γ-ray flux	10 ¹⁴ pps						
Thermal neutron flux	10 ⁹ pps cm ⁻²						
Fast neutron flux	10 ¹² pps						

- 1. Neutron and Gamma activation analysis.
- 2. Production and accumulation of nuclides and tracers for radiochemical and environmental studies.
- 3. Conducting diffraction studies using x-ray bremsstrahlung.
- 4. Study of nuclear reaction induced by g-quanta
- 5. Biological and genetics research
- 6. Hardness tests...

114 Elerovium	4
	1
	Ľ
CTI	
1/1	01
	FLOUR

Commissioned:	198
Reconstructed:	200

985 2002

Setups:

- polymer film irradiation unit with uniform implantation over a 600x200 mm target
- box for material science research

Parameters					
Accelerated ions	$\begin{array}{cccc} ^{22}Ne^{+4} & ^{40}Ar^{+7} \\ ^{56}Fe^{+10} & ^{86}Kr^{+15} \\ ^{127}I^{+22} & ^{132}Xe^{+23} \\ ^{132}Xe^{+24} & ^{182}W^{+32} \\ ^{184}W^{+31} & ^{184}W^{+32} \end{array}$				
A/Z ratio	5.5 - 5.95				
Ion energy	0.9-1.2 MeV/A				
Pole diameter	1 m				
Vacuum	5·10 ⁻⁸ Torr				
⁸⁶ Kr ¹⁵⁺ beam intensity	$1.4 \cdot 10^{12} \text{pps}$				
¹³² Xe ²³⁺ beam intensity	$\sim 10^{12} \mathrm{pps}$				

Science for life - applied physics researches

Interactions of accelerated heavy ion beams with matter : projectile + target

Since middle of 1970's track membrane technology based on HIB were realized at U300 in FLNR.

... In 2024

- Creation and development of track membranes (nuclear filters) and the heavy ion induced modification of materials.

- Activation analysis, applied radiochemistry and production of high purity isotopes (methodology !!!).
- Ion-implantation nanotechnology and radiation materials science.
- Testing of electronic components (avionics and space electronics) for radiation hardness.

Nanotechnology Centre

NANOLAB

Scanning electron microscopy

FESEM Hitachi SU8020 Resolution of 1 nm at 15 kV X-ray element microanalysis (EDS) Deceleration mode (500 eV)

X-ray photoelectron spectroscopy K-Alpha

SEM Hitachi S3400N Resolution of 1 nm at 15 kV EDS, WDS Electron backscattering diffraction Multi-functional chemical laboratory (studies of heavy ion irradiation effects, modification of materials, polymers, membranes)

Chemical analysis of thin layers and surfaces

NTEGRA Spectra – Atomic force microscopy (AFM)/ Confocal Raman & Fluorescence

Studies of nanostructures induced by single ion impact on the surface of solids; depth-resolved Raman and photoluminescence spectra Preci Capillary porometer Porolux

Precise characterization of ultra- and microfiltration membranes

nvestigations of static and dynamic wetting phenomena

Ion track etching technology

Variety of pore shapes in track-etched membranes

Cylindrical, parallel, all tilted at an angle of 45°

Bow tie like

Cylindrical, non-parallel (typical commercial TM with small pores)

Typical commercial TM with large pores

Radiation stability of oxide nanoparticles in ODS alloys against swift heavy ion irradiation simulating fission fragments impact

ODS = Oxide Dispersion Strengthened alloys: Ferritic matrix + 5÷50 nm size thermally stable oxides dispersed within it

Strengthening principle in ODS alloys: Nanoparticles are obstacles to dislocation glide

ODS steels are promising candidates for fuel cladding

Microstructure of 167 MeV Xe ion irradiated EP450 ODS specimen. Ion fluence is 10^{12} cm⁻². Dark spots are amorphous latent tracks in Y₂Ti₂O₇ nanoparticles.

HRTEM micrograph micrographs of latent tracks in $Y_2Ti_2O_2$ in EP450 ODS steel showing the amorphous nature of ion tracks

Testing of electronic components (avionics and space electronics) for radiation hardness.

Question to be answered – what will be if...you have TOO much species in your "sandwich".... or ONE is already enough ???

- What does it mean for FLNR ??

Using the accelerator complex to irradiate the DUT (Device Under Test) with the heavy ion beams (with <u>well-known</u> characteristics).

- What does it mean for Users ??

To observe response and operate the DUT under exposure online.

Goal:

Obtaining experimental data within Earth limits to predict SEE rate in space.

3 dedicated beamlines with $E=3\div64$ MeV/n.

Since 2008, more then 5000 devices has been tested.

Heavy ion beam parameters do these all-sort practical applications need in 202??

Ion track technology needs:

- energy > 1 MeV per nucleon
- Ions from Ne up to Bi
- Intensity with Xe (as example) $1 \times 10^{12} \text{ c}^{-1}$
- Irradiation zone 650*250 mm (1-2 MeV/n) and 325*190mm (4,8 AMeV/n)
- Beam uniformity 5 %
- Casemate "green area" people around irradiation chamber
- Oversize irradiation chamber => dedicated beam line

Radiation materials science:

- energy up more than 1 MeV per nucleon
- Ions from Ne up to Bi or U
- Intensity with Xe (as example) $1 \times 10^{12} \text{ c}^{-1}$
- Irradiation zone Ø30 mm (1-2 AMeV) and Ø20 mm (4,8 AMeV)
- Dedicated beam line due to specific T° requirements and sample preparation procedure.

Testing of electronic component (SEE testing):

- Energy, which could provide the ion range in Si around 50 mkm - 4,8 MeV per nucleon (70% timing is LowEnergyMode)

- Ions from Ne up to Bi (Ne, Ar, Kr, Xe, Au, Bi)
- LET up to $100 \text{ MeV}/(\text{mg}\times\text{cm}^2)$
- Intensity 1x10⁵ c⁻¹×cm⁻²
- Irradiation zone 200*200 mm at least
- Dedicated beam line due to specific requirements and sample preparation procedure.
- Cocktail beam quick switching between ion types.

What we need from cyclotron to fit applied science requirements?

- 24*7*365 ~ 7000 of beam time
- Simplicity of operation
- Time stability
- Beam cocktail
- Relatively cheap in use beam time costs
- Factory approach/routinely use "turning lathe"
- Economy factor: to use the existing stuff

Administrative issues:

The new accelerator complex should solve the following tasks:

• reduce the application program of the main cyclotrons U400(R) and U400M in order to be more focused on the scientific tasks of the Laboratory (SHE, radioactive ions and exotic nucleus are required more accelerator time);

• increase the energy of heavy ion beams for the production of nuclear filters to at least 2 MeV/n, which will allow irradiating polymer films up to 30 microns thick and fits new standards in this field;

• provide energy of 4.8 MeV/n of heavy ion beams for testing chips for radiation resistance and fits new standards in this field;.

International innovative research center of JINR

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ПРИКАЗ

2 6. 0 5. 2021

г. Дубна

Об организации работ по созданию проекта инновационного исследовательского центра ОИЯИ

В связи с одобрением КПП ОИЯИ деятельности дирекции по формированию концепции Инновационного исследовательского центра ОИЯИ в области ядерных технологий (далее — Центра) и необходимостью организации работ по созданию проекта Центра в рамках утвержденного Стратегического плана долгосрочного развития ОИЯИ до 2030 года и далее

 научно-исследовательского комплекса в ЛЯР для материаловедения и НИОКР в области технологий для ядерной медицины на базе создаваемых циклических ускорителей и проектируемой РХЛ 1-го класса. DC-140 PROJECT. THE NANOLAB: STATUS «ON»

DC-140 Project Plots

DC140 prelaminar "what to do list"

- Dismantling of the U200 cyclotron and old stuff removing
- Geo surveys (determine bearing capacity of soil and quality of old basement constructions)
- Building renovation
- Vacuum system + main chamber (new)
- Colling system (new)
- Control system (new)
- Axial injection (partly new)
- Beam extraction (new)
- Cyclotron magnetic structure (upgrade)
- RF system (upgrade)
- Magnet main coils (new)
- Beamlines (upgrade)
- Safety features (new)
-

Technical issues of DC-140:

- range of ions from O to Bi,
 - external beam injection from ECR ion source,
 - ion energies:

2.124 MeV/nucleon (A/Z=7.35 - 8.25).

4.8 MeV/nucleon (A/Z=4.9 - 5.5).

Physical installations:

- installation for scientific and applied research,
- facility for irradiation of polymer films,
- installation for testing of electronic components.

The acceleration of ion beam in the cyclotron will be performed at constant frequency f = 8.632 MHz of the RF-accelerating system for two different harmonic numbers h. The harmonic number h = 2 (f=4.316 MHz) corresponds to the ion beam energy E = 4.8 MeV/u and value h = 3 (f=2.877MHz) corresponds to E = 2.124 Mev/nucleon.

Pole (extraction) radius, m	1.3(1.18)					
Magnetic field, T	1.415÷1.546					
Number of sectors	4					
RF frequency, MHz	8.632					
Harmonic number	2	3				
Energy, MeV/u	4.8	2.124				
A/Z range	5.0÷5.5 7.577÷8.2					
RF voltage, kV	60					
Number of Dees	2					
Ion extraction method	electrostatic deflector					
Deflector voltage, kV	73.5					

OTM.+0,600

Θ

0

0

Θ

General layout of the DC140 facility: vault of the cyclotron and experimental setup halls. Detailed equipment and systems arrangement.

A AUTODESK VIEWER

ANTODES

$Concept \rightarrow Design \rightarrow Realization$

Step by step => 06/07/2023

Сдача в эксплуатацию – 1 полугодие 2025 года

Step by step => 2024

Control room, Accelerator hall, Experimental channels halls

Сдача в эксплуатацию – 1 полугодие 2025 года

Создание УК ДЦ-140

ООО "МастерПром" и ЛЯР			2024							2025							
			04	05	06	07	08	09	10	11	12	01	02	03	04	05	06
Общестроительные работы (бетонные, металичкские, ЛСТК конструкции)	09.01.24	15.09.24															
Установка элементов инженерных систем (газоочистка, вентиляция, канализация, электрика, слаботочные сети)	01.07.24	15.10.24															
Изготовление и подготовка элементов циклотрона для монтажа (элементы ВЧ системы, резонаторы, элементы вывода, элемнты каналов, суппорты,)	05.02.24	15.10.24															
Монтаж элементов инженерных систем циклотрона (система охлаждение, линии ВЧ питания, ВЧ геннераторы,)	01.10.24	30.11.24															
Сборка циклотрона (ускоряющая система, каналы транспортировки, вакуумная система,)	23.11.24	03.03.25															
Монтаж систем АСРК и СБИС	15.09.24	03.03.25															
ПНР систем УК ДЦ-140	03.03.25	02.04.25															
ПНР УК ДЦ-140	02.04.25	09.04.25															
Тесты с ускоренным пучком	10.04.25	01.07.25															

Cyclotron	2022	2023	2024	2025	2026	2027
U400/U400R	Low and middle er	ergy beam species	U400R p	roject and new experim	ental hall	Middle energy
U400M	<u></u>	M modernization	Low energy Low energy line	rgy beam	Beam line #A1S (High	energy)////////////////////////////////////
DC140		DC140 proj	ect////////////////////////////////////	Dedic	ated beam line #1 at DC energy)	140 complex (Low

70% of testing time is using "low-energy" mode (3-6 MeV/nucl) 20% of testing time is using "middle-energy" mode (9-12 MeV/nucl) 10% of testing time is using "high-energy" mode (13-64 MeV/nucl)

Ускорительный комплексе ЛЯР ОИЯИ в 2024 году. Некоторые аспекты прикладных исследований.

С.В. Митрофанов

Благодарю за внимание