Three-window approach to (cold) dense matter

References (3-window modeling)

- Masuda-Hatsuda-Takatsuka (2012, 2013) : the 1st version
- Kojo-Powell-Song-Baym (2014), Fukushima-Kojo (2015) : extension
- Kojo (2015) : concise review of 3-window modeling
- Baym-Hatsuda-Kojo-Powell-Song-Takatsuka (2017) : comprehensive review

Rept. Prog. Phys. 81 (2018) no.5, 056902 (arXiv: 1707.04966 [astro-ph])

including EoS: Quark-Hadron-Crossover (QHCI8)

Annala-Gorda-Kurkela-Vuorinen (2017) & refs. therein

More conservative use of 3-window modeling

3-characteristic regimes in QCD matter

- I, Low density regime (hadrons dilute)
 Theory reliable : EFT with exp. inputs (hadron spectroscopy)
 Effective d.o.f : hadrons
- 2, High density regime (hadrons overlapped)
 Theory reliable : weak coupling computations
 Effective d.o.f : quarks & gluons

3, Intermediate regime

Theoretically most difficult, most important in phenomenology

Effective d.o.f : **NOT clear-cut**, collective something?

Difficulties in the QCD case The domains of (theoretically reliable) Iow & high density regimes DO NOT overlap !

Difficulties in predicting physics around phase transitions

What we will discuss

- the gross pictures on the QCD phase diagram
- effective d.o.f. & interactions
- how to use the thermodynamic relations in practice
- how to use the astrophysical data in practice
- orientations toward the future QCD computations

Many details remain to be worked out

Plan of lectures

- I, Lessons from hot QCD: how 3-window works
- 2, Theoretical orientation: high & low density limits (T=0)
- 3, NS constraints on EoS : hints for **soft-stiff** EoS
- 4, Crossover scenario: chiral restorations, etc.
- 5, A quark model : delineating the properties of matter
- 6, The astrophysical results from EoS QHC18

7-, Other topics: warm EoS, beyond-MF, etc.

Hot QCD case 2 : improved low & high T EoS modern version: HRG (hadron resonance gas) VS pQCD (resummed)

9/

Hot QCD case 3 : 3-window modeling use only trustable parts of HRG & pQCD (resummed)

Hot QCD case 3 : 3-window modeling use only trustable parts of HRG & pQCD (resummed)

picture reasonably consistent with lattice & exp. data

Plausible picture for HOT QCD

Fig. from Baym et al. 2018

||/

Plan of lectures

- I, Lessons from hot QCD: how it works
- 2, Theoretical orientation: high & low density limits (T=0)
- 3, NS constraints on EoS : hints for **soft-stiff** EoS
- 4, Crossover scenario: chiral restorations, etc.
- 5, A quark model : delineating the properties of matter
- 6, The astrophysical results from QHC18

7-, Other topics: warm EoS, beyond-MF, etc.

Cold, dense EoS : High density

3-loop pQCD : Freedman-McLerran 78; Baluni 78; Kurkela-Romatschke-Vuorinen 09

[some 4-loop contributions: E. Sappi et al.]

check of convergence

check of renorm. scale dep.

- Interactions crucial for $\mu_q < \sim |GeV \text{ or } n_B < \sim 50 n_0$
- Hints for effective repulsion (more μ needed to reach n_{ideal})

calculations based on microscopic interactions

NN + 3N forces + ...

a) Fit to data

- to E \sim 350 MeV for NN $\,$ (well constrained)

(uncertain)

fit to nuclei for NNN

b) ChEFT (N³LO)

- systematics
- symmetry of QCD

c) Lattice QCD

• NN & YN, YY pot.

HAL collaboration....

Epelbaum, Heberer, Kaiser, Schwenk, ...

Illinois, Argonne, Bonn,

Many-body calculations (non-perturbative for soft nucleons)

- Hartree-Fock, BHF, ...
- Quantum Monte-Carlo
 Carlson. Gandolfi, ...
- Variational

Pandharipande, Takano, Togashi, ...

EoS

|4/

Drischler-Hebeler-Schwenk, 2016

• pure neutron matter is less uncertain:

microscopic calculations at $n_B = 1-2 n_0$: consistent with empirical facts

For NS applications (n_B=1-10n₀), the fundamental question is: convergence of many-body forces

e.g. I) parameterized **pure neutron** matter EoS [Gandolfi+, 2009]

 $\sim kin. + 2\text{-body} \qquad \sim 3\text{-body}$ $\varepsilon = n_0 \left[(12 \pm 1 \,\text{MeV}) \left(\frac{n_B}{n_0} \right)^{1.45 \pm 0.05} + (4 \pm 2 \,\text{MeV}) \left(\frac{n_B}{n_0} \right)^{3.3 \pm 0.3} \right]$

e.g.2) Akmal-Pandharipande-Ravenhall EoS (APR 98) [Table V of APR paper]

pure
neutron
matter2 -body int.3 -body int.4-, 5- or more-body forces
should be important as well
beyond ~ $2n_0$ n_0 -4.1-29.91.24.5 n_0 -4.1-29.91.24.5 $2 n_0$ -25.1-36.4-17.430.6 $3 n_0$ -35.7-44.7-34.178.0 $4 n_0$ -52.2-41.1-76.9160.3

Akmal-Pandharipande-Ravenhall EoS (APR 98)

Plan of lectures

- I, Lessons from hot QCD: how it works
- 2, Theoretical orientation: high & low density limits (T=0)
- 3, NS constraints on EoS : hints for **soft-stiff** EoS
- 4, Crossover scenario: chiral restorations, etc.
- 5, A quark model : delineating the properties of matter
- 6, The astrophysical results from QHC18

7-, Other topics: warm EoS, beyond-MF, etc.

Baryon density in a neutron star (QHC18)

0u/^Bu

GWs from NS-NS mergers

26/

Tidal deformation \rightarrow accelerated phase evolution

I) grav. fields from star $B\,\,\rightarrow\,$ the deformation of star A

2) deformed energy density \rightarrow quadrupole grav. fields

Tidal deformation \rightarrow accelerated phase evolution

Dimensionless tidal deformability $\rightarrow R_{NS}$ more common to use $\overline{\Lambda(M)} = 32 \frac{\lambda G}{R^5}$ What GW analyses measure: combination of Λ for star | & 2: $\tilde{\Lambda} = \frac{16}{13} \frac{(M_1 + 12M_2)M_1^4 \Lambda_1 + (M_2 + 12M_1)M_2^4 \Lambda_2}{(M_1 + M_2)^5}$ (measured) 2-parameters: M₁ & M₂

28/

 \rightarrow we consider a **soft-stiff** EoS with **crossover** (or weak 1st order)

Finite T vs low T crossover

Summary of lecture I

I, QCD has reliable high & low density limits, but be careful in extrapolating these results:

interpolation of these limits are much safer procedure

- 2, I^{st} principle methods \rightarrow the validity range of quasi-particle pictures
- 3, NS observations \rightarrow Hints for **soft-stiff** EoS + **causality**

 \rightarrow Hadron-quark P.T.: crossover or weak 1st order

Lecture 2 : Discussions from microscopic point of view

Three-window approach to (cold) dense matter: Lect. 2

Hints for **soft-stiff** EoS

 \rightarrow we consider a **soft-stiff** EoS with **crossover** (or weak 1st order)

Caveats

Matching or interpolation of 2-EoSs look innocent, but actually it is NOT a trivial task at all.

(especially when underlying microphysics are different)

EoS must be • thermodynamically consistent • causal $(dP/d\epsilon|_s = c_s^2 < c^2)$

Otherwise numerical simulations easily stop by instability. (In fact some EoS tables in the website are not usable...)

In addition, we have nuclear & astrophysical constraints :

Stronger constraints for **softer-stiffer** EoS.

(\rightarrow more chances to select out the correct EoS)

Constraints -> quark model parameters

The allowed range of (gv, H) is constrained; -> predictions for other domains, e.g. (Ye, T, ...) (explanations for plots -> Lect.3) 6/

Plan of lectures

- I, Lessons from hot QCD: how 3-window works
- 2, Theoretical orientation: high & low density limits (T=0)
- 3, NS constraints on EoS : hints for **soft-stiff** EoS
- 4, The constraints on $P(\mu)$ curves
- 5, Order parameter & symmetry
- 6, Chiral sym. restoration & color-superconductivity
- 7, A quark model : delineating the properties of matter
- 8, The astrophysical results from EoS QHC18
- 9, Other topics: warm EoS, beyond-MF, etc.

energy density at a given number density

$$\varepsilon(\mathbf{n})$$
: $d\varepsilon(\mathbf{n}) = \mu d\mathbf{n}$ $\mu(\mathbf{n}) = d\varepsilon(\mathbf{n})/d\mathbf{n}$

For QCD calculations, more common to work at fixed μ

change of variables : Legendre transf.

$$-\mathsf{P} = \Omega(\mu) = \varepsilon - \mu \mathsf{n}$$

 $\rightarrow d\Omega(\mu) = d\epsilon - \mu dn - n d\mu = - n d\mu$

With the expression of $P(\mu)$ given 1

$$n(\mu) = dP/d\mu$$

$$\epsilon(\mu) = \mu n(\mu)$$

$$\epsilon(\mu) = \mu n(\mu) - P(\mu)$$

8/

all info about EoS included

Stiffening I : Rotation

Stiffening 2 : Parallel shift

||/

App.I : "Pairing" can stiffen EoS

Do exotic phases always give softening? \rightarrow Not necessarily

 \rightarrow Softening at low n_B & stiffening at high n_B

App.2 : $P(\mu)$ must grow sufficiently fast (otherwise the speed of sound becomes superluminal) e.g.) constant slope P_{Q3} Interpolated (constant slope) P_H μ_B $c_s^2 = \frac{\partial P}{\partial c} \to \infty$ ($\Delta P = \text{finite}, \text{but } \Delta \varepsilon = 0$)

(more analyses $\rightarrow P(\mu)$ should grow faster than μ^2)

App.3 : $P(\mu)$ must NOT have inflection points (or $P(\mu)$ must be convex)

App.4 : Ist order P.T. & speed of sound

 c_s^2 grows rapidly before P.T., then suddenly reduces to zero.

Plan of lectures

- I, Lessons from hot QCD: how 3-window works
- 2, Theoretical orientation: high & low density limits (T=0)
- 3, NS constraints on EoS : hints for **soft-stiff** EoS
- 4, The constraints on $P(\mu)$ curves
- 5, Order parameter & symmetry
- 6, Chiral sym. restoration & color-superconductivity
- 7, A quark model : delineating the properties of matter
- 8, The astrophysical results from EoS QHC18
- 9, Other topics: warm EoS, beyond-MF, etc.

Symmetry & Order parameters I

Spontaneous Symmetry Breaking (SSB)

(Heisenberg, Landau, Nambu 60, Goldstone 61)

Sym. of **Hamiltonian ≠** Sym. of **States**

e.g.) A ball in a wine bottle (classical)

- Hamiltonian: rotational symmetric
- Ground state:

NOT rotational symmetric

18/ Symmetry & Order parameters 2 (Quantum)

Symmetry of H \rightarrow symmetry generator Q $e^{i\theta\hat{Q}}\hat{H}e^{-i\theta\hat{Q}}=\hat{H}$ "rotation" invariant

Suppose the G.S. is $|0\rangle$. "Rotate" the G.S. as

$$|\theta\rangle = \mathrm{e}^{-\mathrm{i}\theta Q}|0\rangle$$

The "rotated" state has the same energy as $|0\rangle$. $|\theta\rangle = e^{i\delta}|0\rangle$ trivial ($|0\rangle \& |\theta\rangle$ are the same state) $|\theta\rangle \neq e^{i\delta}|0\rangle$ SSB ($|0\rangle \& |\theta\rangle$ can be G.S., but $|0\rangle$ was chosen)

How to check? We look for **order parameter** :

$$\langle \theta | \hat{O} | \theta \rangle - \langle 0 | \hat{O} | 0 \rangle = i \theta \langle 0 | \delta_Q \hat{O} | 0 \rangle + \cdots$$

If $\langle \delta O \rangle$ is nonzero, we can say $|0\rangle \& |\theta\rangle$ are different.

Symmetry & Order parameters 3 Sym. unambiguously distinguishes the phases If chiral sym. of QCD were exact...

Symmetry & Order parameters 5

Because of explicit sym. breaking, the possible chiral phase transitions can be **any**. (crossover, 1st, 2nd, ...)

Also, rigorous order parameters for confinement are **NOT** known. (except for pure YM)

Hadron-quark P.T. is difficult to define in a formal way.

(even Confinement-Higgs is difficult to distinguish; Fradkin-Shenkar 79)

Then what can we do?

I, If we are lucky, we can find **abrupt changes**

(e.g. Ist order P.T. or radical crossover)

2, If not, need to examine the validity of **effective d.o.f.** (if proper d.o.f are used, calculations converge quickly)

Dynamics must be discussed

Plan of lectures

- I, Lessons from hot QCD: how 3-window works
- 2, Theoretical orientation: high & low density limits (T=0)
- 3, NS constraints on EoS : hints for **soft-stiff** EoS
- 4, The constraints on $P(\mu)$ curves
- 5, Order parameter & symmetry
- 6, Chiral sym. restoration & color-superconductivity
- 7, A quark model : delineating the properties of matter
- 8, The astrophysical results from EoS QHC18
- 9, Other topics: warm EoS, beyond-MF, etc.
Generation of the chiral condensate

Chiral Condensate : $\langle 0|\overline{q}q|0\rangle$

Chiral sym. breaking & restoration

Ist order chiral transition (typical quark models)

Braking density evolution: $I^{st} \rightarrow crossover$

Now add density-density repulsion

 $\Delta H \sim g_V (n_B)^2$

braking the evolution of n_B

 \rightarrow milder changes in M

Details of int. are crucial

Some quark model results

 $\Delta H \sim g_V (n_B)^2$

repulsion tempers the growth of $n_B \rightarrow milder$ chiral phase transition (1st -> crossover)

Di-fermion pairing

As density increases, another kind of condensation takes place: (particle-particle & hole-hole pairing) Cooper-pair $\uparrow E$ di-baryon or di-quark M p

Key elements for condensations

- Fermi surface : large phase space for gapless excitations (many pairs can be formed)
- attractive interactions (small int. is already enough)

Diquark pairing : quantum number

[Bailin-Love, Alford, Rajagopal, Wilzcek, Schafer, ...]

less (more) color charges

color: $\mathbf{3} \otimes \mathbf{3} = \overline{\mathbf{3}} \oplus \mathbf{6}$

So we consider **color anti-symmetric** channel.

$$\sim lpha_s \, rac{ec{\sigma_i} \cdot ec{\sigma_j}}{M_i M_j} \, \delta(ec{r}_{ij}) \qquad (ext{at short distance})$$

Most attractive for **spin-singlet & S-wave**

& fermion statistics -> flavor anti-symmetric

qq-"condensate"

color-antisym

$$\langle \psi_i^{\alpha} C \gamma_5 \psi_j^{\beta} \rangle = \epsilon^{\alpha \beta A} \epsilon_{ijB} \Delta_B^{A}$$

scalar 0+

flavor-antisym

qq-pairing

Some quark model results [β-equilibrium]

 $(n_B < 5n_0 \text{ is not trustable})$

Remark:

- repulsive forces included
- chiral & diquark condensates coexist
- pairing favors $n_u = n_d = n_s$

many strange quarks!

[more will be explained in Lect. 3]

Summary of lecture 2

I, Interpolation procedure looks innocent, but many constraints must be taken care. (thermo., causality, astro & nuclear)

2, How to graphically extract EoS info from $P(\mu)$

3, The nature of chiral restoration strongly depends on the presence of repulsive interactions; should be examined when we build models

4, Color-superconductivity; theoretically well-motivated we should include, or should explain why it is not generated...

Lecture 3 : A quark model & impacts on observables

Three-window approach to (cold) dense matter: Lect. 3

20/3 I Quark-Hadron continuity (some history)

- I, Percolation picture Baym-Chin 1978; Satz-Karsch 1979,...
- 2, In the context of color-superconductivity (CSC) Schafer-Wilczek 1998 symmetry: hadron super fluidity ~ color-flavor-locked (CFL) phases same order parameters : $\langle BB \rangle \sim \langle (qqq)^2 \rangle$ color singlet, but break $U(I)_B$; chiral sym. is also broken confinement-Higgs complementarity Fradkin-Shenkar 1979 dynamics: the interplay between chiral & diquark proposal of double CEP Kitazawa+ 2002; Hatsuda+2006; Zhang+ 2009, ...
- 3, Inferred from the NS constraints (for $2n_0 5n_0$) Masuda+2012, Kojo+2014, soft-stiff EoS & causality \rightarrow **crossover** or **weak** 1st order

[McLerran-Pisarski '07]

 μ

[McLerran-Pisarski '07]

3/25

 $\mu_{\boldsymbol{G}}$

[McLerran-Pisarski '07]

[McLerran-Pisarski '07]

Several branches

Confined, but chiral symmetric matter (many papers ...)

• have been challenged by many model calculations [Glozman et al. 2007,]

(chiral sym. broken only locally)

- Confined, *inhomogeneous* chiral SSB (still ongoing ...)
 - Skyrme crystals, ...
 - Chiral density wave (1-D periodic structure) [Carignano-Nickel-Bubbala]
 - Quarkyonic Chiral Spirals
 [TK-Hidaka-Fukushima
 -McLerran-Pisarski-Tsvelik 09-11]
 Interweaving Chiral Spirals
 [TK-Hidaka-Fukushima
 -McLerran-Pisarski-Tsvelik 09-11]

Reinterpretation of Hadron-Quark Continuity

- Original proposal : Schafer-Wilczek
- CSC in quarkyonic matter & NS context
 [Fukushima-TK '15]

Plan of lectures

- I, Lessons from hot QCD: how 3-window works
- 2, Theoretical orientation: high & low density limits (T=0)
- 3, NS constraints on EoS : hints for **soft-stiff** EoS
- 4, Crossover scenario: chiral restorations, etc.
- 5, A quark model : delineating the properties of matter
- 6, The astrophysical results from EoS QHC18

7-, Other topics: warm EoS, beyond-MF, etc.

- 0, quark matter can be stiff
- I, chiral restoration, color-super
- 2, expand quark-hadron continuity picture, percolation model, quarkyonic matter, Wilczek-Schafer, interplay b.t.w chiral & diquark,
 - phases separated by symmetry
- 3, P vs mu : graphical rep.
- 4, NN, NY interaction: universal repulsion & strangeness?
- 5, a schematic quark model
- 6, astrophysical outputs

Traditional hybrid construction

- Key (implicit) **assumptions** :
 - I) Hadronic & quark phases are distinct (e.g. by order parameters)
 - 2) Both P_H and P_O are reliable in the overlap region
- → by construction, Q-EoS must be much softer than H-EoS (unless fine tuning worked out)

+ **important** constraints (charge neutrality & β - equilibrium & color-neutrality)

Goal:

Delineate the properties of matter through $(G_s, H, g_V)_{@5-10n0}$

minimal

minimal

24/3I

minimal + vector int.

25/3I

minimal + vector int.

25/3 I

+ attractive color-magnetic int.

+ confinement in dilute matter

M-R curves for QHCI8

28/3I

 $G_s \sim G_v \sim H$ (i) $n_B = 5 - 10 n_0 \rightarrow O(G_s^{vac})$

EoS from aLIGO vs QHC18b

aLIGO & Virgo new analyses for GW170817 arXiv: 1805.11581 [gr-qc]

So we need dynamical arguments

- Troubles of purely hadronic EoS at $n_B > \sim 2n_0$
 - Convergence: 2-body forces ~ 3-body forces
 - Hyperon problems (softening)

Most typical attempts

Put by hand

Exclusion volume effect for baryons or repulsive forces universal for all flavors

Hard core is not universal

consistent with 6q calculations in constituent quark models;

Pauli-blocking x color magnetic interactions (Oka-Yazaki)

Can we block the appearance of the strangeness to $n_B \sim 5n_0$??
Summary

I, Neutron star M-R relations \rightarrow Direct Info of QCD EoS

2, Hints for **Soft-Stiff** EoS \rightarrow crossover or weak Ist order P.T. for 2-5n₀

3, Quark matter EoS can be stiff; the impression of soft quark EoS was largely biased by traditional hybrid construction...

4, $(Gs, G, H)_{@5-10n0} \sim Gs^{vac} \rightarrow Hints for non-pert. gluons$

To Do (work in progress...)

Then the matter should be heated up \rightarrow predictions for HMNS

excitation modes

the phase structure

Small R_{1.4} & soft EoS @ 1-2 n₀?

• Thermal X-rays analyses for NS radii :

- Suleimanov et al (2011) : > 13.9 km
- •Ozel & Freire (2015) : 10.6 ± 0.6 km
- •Guillot et al. (2011) : $9.1^{+1.3}_{-1.5}$ km
- •Steiner et al (2015) : 12.0 ± 1.0 km

systematic uncertainties : distance to NS, atmosphere of NS, uniform T distributions,...

 $M_{diff} \sim 1.5 M_{TOV}$

3) differentially rotating NS : Numerical GR

(short-live; dissipation and magnetic braking \rightarrow collapse)

Baryon number density

Design sensitivity

To detect rare events

1pc = 3.26 lyr

- our galaxy (milky-way) ~ 31-55 kpc
- to the edge of universe ~ 14 Gpc
- detector horizon
 - aLIGO
 - Livingston ~ 218 Mpc
 - Hanford ~ 107 Mpc
 - Virgo ~ 58 Mpc
- expected detection rate
 0.1 100 events/year

• GW170817 happened at 40^{+8}_{-14} Mpc

Fig. from PRL 119, 161101 (2017)

 aLIGO: signal-to-noise = 32.4 ! (largest GW signal ever)

- Virgo did not find it
 GWs from the blind spot of Virgo
 → strongly constrain the location
 → trigger follow-up EM studies
- clear signal 20 Hz 1kHz
 inspiral tidal deformed phases
 BH ring-down not measured
 (larger noise at higher frequency)
- EM signals from objects just after merger

27/28 **Summary** \rightarrow hot EoS, etc. **Early inspiral Tidally deformed** Gamma-ray bursts, kilonova **Hyper Massive NS** ~ 1000 km (HMNS) BH $\rightarrow M_{max}$ of spinning NSs $\rightarrow R_1 \& R_2$ $\rightarrow M_1 \& M_2$ spins quark-gluon plasma Nuclear -> Interpolated EoS < -Quark models (non-confining) (pQCD) ~150 MeV hadrons \rightarrow quarks n_R hadron nuclear color superconductivity resonance gas ~ 2n₀ ~ (4-7)n₀ ~ 100 n_o

 μ_B

 M_N

• GW detectors :

aLIGO (O3) VIRGO KAGRA LIGO India, ...

Template 1: post-Newtonian for f < ~1kHz

Cutler et al., PRL70, 2984 (1993)

$$\frac{d\mathcal{N}_{cyc}}{d\ln f} = \frac{5}{96\pi} \frac{1}{\mu M^{2/3} (\pi f)^{5/3}} \left\{ 1 + \left(\frac{743}{336} + \frac{11}{4} \frac{\mu}{M}\right) x \right\}$$
Advanced LIGO DESIGN SENSITIVITY S.] $x^2 + O(x^{2.5}) \right\}.$

$$\sum_{i=1}^{N} \frac{10^{-21}}{10^{-22}} \frac{5}{10^{-24}} \frac{10^2}{10^2} \frac{10^2}{10^2} \frac{10^3}{10^3}$$

EoS from aLIGO vs QHC18

aLIGO & Virgo new analyses for GW170817 arXiv: 1805.11581 [gr-qc]

EoS constraints with

- tidal deformability
- causality

APR~11.1km, H4~13.6km, MS1~14.5km

Table 1: Key Properties of GW170817		
Property	Value	Reference
Chirp mass, \mathcal{M} (rest frame)	$1.188^{+0.004}_{-0.002} M_{\odot}$	1
First NS mass, M_1	$1.36 - 1.60 M_{\odot} ~(90\%, { m low ~spin ~prior})$	1
Second NS mass, M_2	$1.17 - 1.36 M_{\odot} ~(90\%, { m low ~spin ~prior})$	1
Total binary mass, $M_{\text{tot}} = M_1 + M_2$	$pprox 2.74^{0.04}_{-0.01} M_{\odot}$	1
Observer angle relative to binary axis, $\theta_{\rm obs}$	$11-33^\circ~(68.3\%)$	2
Blue KN ejecta $(A_{\rm max} \lesssim 140)$	$pprox 0.01 - 0.02 M_{\odot}$	e.g., 3,4,5
Red KN ejecta $(A_{\text{max}} \gtrsim 140)$	$pprox 0.04 M_{\odot}$	e.g., 3,5,6
Light <i>r</i> -process yield $(A \lesssim 140)$	$pprox 0.05 - 0.06 M_{\odot}$	
Heavy <i>r</i> -process yield $(A \gtrsim 140)$	$pprox 0.01 M_{\odot}$	
Gold yield	$\sim 100-200 M_\oplus$	8
Uranium yield	$\sim 30-60 M_\oplus$	8
Kinetic energy of off-axis GRB jet	$10^{49} - 10^{50} { m erg}$	e.g., 9, 10, 11, 12
ISM density	$10^{-4} - 10^{-2} \ { m cm}^{-3}$	e.g., 9, 10, 11, 12

(1) LIGO Scientific Collaboration et al. 2017c; (2) depends on Hubble Constant, LIGO Scientific Collaboration et al. 2017d; (3) Cowperthwaite et al. 2017; (4) Nicholl et al. 2017; (5) Kasen et al. 2017; (6) Chornock et al. 2017; (8) assuming heavy r-process (A > 140) yields distributed as solar abundances (Arnould et al., 2007); (9)Margutti et al. 2017; (10) Troja et al. 2017; (11) Fong et al. 2017; (12) Hallinan et al. 2017

Delineating QCD matter from HOT EoS^{3/28}

(Ding-Karsch-Makherjee, review 2015)

derivatives of EoS

 \rightarrow T_c: universal for different flavors

6/36 Dimensionless tidal deformability $\rightarrow R_{NS}$ more common to use $\Lambda(M) = 32 \frac{\lambda G}{R^5} = \frac{2}{3} k_2 \left(\frac{R}{GM}\right)^5 \qquad (k_2: \text{Love number})$ What GW analyses measure: combination of Λ for star I & 2 : (measured) $= 32 \frac{\lambda G}{R^5}$ QGP bag pion gas 100 200 300 400 500

T (MeV)