Neutron star mergers Lecture II

Luciano Rezzolla

Institute forTheoretical Physics, Frankfurt
Frankfurt Institute for Advanced Studies, Frankfurt

erc

Plan of the lectures

*Lecture I: brief introduction to numerical relativity

*Lecture II: brief review dynamics of merging binaries
*Lecture III: brief overview of EOS constraints from mergers
*L. Baiotti and L. Rezzolla, Rep. Prog. Phys. 80, 09690I, 2017
*V. Paschalidis, Classical Quantum Gravity 34, 0840022017
*Rezzolla and Zanotti, "Relativistic Hydrodynamics", Oxford University Press, 2013

The two-body problem: Newton vs Einstein

Take two objects of mass m_{1} and m_{2} interacting only gravitationally

In Newtonian gravity solution is analytic: there exist closed orbits (circular/elliptic) with

$$
\ddot{\boldsymbol{r}}=-\frac{G M}{d_{12}^{3}} \boldsymbol{r}
$$

where

$$
M \equiv m_{1}+m_{2}, \boldsymbol{r} \equiv \boldsymbol{r}_{1}-\boldsymbol{r}_{2}, d_{12} \equiv\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right| .
$$

In Einstein's gravity no analytic solution! No closed orbits: the system loses energy/angular momentum via gravitational waves.

The two-body problem in GR

-For BH s we know what to expect: $\mathrm{BH}+\mathrm{BH} \longrightarrow \mathrm{BH}+\mathrm{GW} s$

The two-body problem in GR

-For BHs we know what to expect:

```
BH+BH}\longrightarrow\textrm{BH}+\textrm{GW
```

-For NSs the question is more subtle: the merger leads to an hyper-massive neutron star (HMNS), ie a metastable equilibrium:

$$
\mathrm{NS}+\mathrm{NS} \rightarrow \mathrm{HMNS}+\ldots ? \rightarrow \mathrm{BH}+\text { torus }+\ldots \boldsymbol{?} \longrightarrow \mathrm{BH}+\mathrm{GWs}
$$

The two-body problem in GR

- For BHs we know what to expect: $\mathrm{BH}+\mathrm{BH} \longrightarrow \mathrm{BH}+\mathrm{GW}$
-For NSs the question is more subtle: the merger leads to an hyper-massive neutron star (HMNS), ie a metastable equilibrium:
$\mathrm{NS}+\mathrm{NS} \rightarrow \mathrm{HMNS}+\ldots ? \rightarrow \mathrm{BH}+$ torus $+\ldots ? \longrightarrow \mathrm{BH}+\mathrm{GW}$
- HMNS phase can provide clear information on EOS

- BH+torus system may tell us on the central engine of GRBs

The two-body problem in GR

- For BHs we know what to expect: $\mathrm{BH}+\mathrm{BH} \longrightarrow \mathrm{BH}+\mathrm{GW} s$
-For NSs the question is more subtle: the merger leads to an hyper-massive neutron star (HMNS), ie a metastable equilibrium:
$\mathrm{NS}+\mathrm{NS} \rightarrow \mathrm{HMNS}+\ldots!\rightarrow \mathrm{BH}+$ torus $+\ldots!\longrightarrow \mathrm{BH}+\mathrm{GW}$
- ejected matter undergoes nucleosynthesis of heavy elements

The equations of numerical relativity

$$
\begin{aligned}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi T_{\mu \nu}, & \text { (field equations) } \\
\nabla_{\mu} T^{\mu \nu}=0, & (\text { cons. energy } / \text { momentum }) \\
\nabla_{\mu}\left(\rho u^{\mu}\right)=0, & \text { (cons. rest mass) } \\
p=p\left(\rho, \epsilon, Y_{e}, \ldots\right), & \text { (equation of state) }
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{\nu} F^{\mu \nu} & =I^{\mu}, \quad \nabla_{\nu}^{*} F^{\mu \nu}=0, \quad(\text { Maxwell equations }) \\
T_{\mu \nu} & \left.=T_{\mu \nu}^{\text {fluid }}+T_{\mu \nu}^{\mathrm{EM}}+\ldots \quad \text { (energy }- \text { momentum tensor }\right)
\end{aligned}
$$

In GR these equations do not possess an analytic solution in the regimes we are interested in

merger $\longrightarrow \mathrm{HMNS} \longrightarrow \mathrm{BH}+$ torus

Quantitative differences are produced by:

- total mass (prompt vs delayed collapse)

Broadbrush picture

merger $\longrightarrow \mathrm{HMNS} \longrightarrow \mathrm{BH}+$ torus

Quantitative differences are produced by:

- total mass (prompt vs delayed collapse)
- mass asymmetries (HMNS and torus)

* the torii are generically more massive
* the torii are generically more extended
* the torii tend to stable quasi-Keplerian configurations * overall unequal-mass systems have all the ingredients - needed to create a GRB

merger $\longrightarrow \mathrm{HMNS} \longrightarrow \mathrm{BH}+$ torus

Quantitative differences are produced by:

- total mass (prompt vs delayed collapse)
- mass asymmetries (HMNS and torus)
- soft/stiff EOS (inspiral and post-merger)
- magnetic fields (equil. and EM emission)
- radiative losses (equil. and nucleosynthesis)

How to constrain the EOS from the GWs

Anatomy of the GW signal

Inspiral: well approximated by PN/EOB; tidal effects important

Anatomy of the GW signal

Merger: highly nonlinear but analytic description possible

Anatomy of the GW signal

post-merger: quasi-periodic emission of bar-deformed HMNS

Anatomy of the GW signal

Collapse-ringdown: signal essentially shuts off.

In frequency space

Read et al. (2013)

What we can do nowadays

Takami, LR, Baiotti (2014, 2015), LR+ (2016)

Extracting information from the EOS

Takami, LR, Baiotti (20|4, 2015), LR+ (2016)

SOFT

There are lines! Logically not different from emission lines from stellar atmospheres.

A new approach to constrain the EOS

Oechslin+2007, Baiotti+2008, Bauswein+ 2011, 2012, Stergioulas + 201I, Hotokezaka+ 2013, Takami 20I4, 20I5, Bernuzzi 20I4, 20I5, Bauswein+ 20I5, Clark+ 20I6, LR+20I6, de Pietri+ 20I6, Feo+ 2017, Bose+ 2017

merger frequency

A spectroscopic approach to the EOS

Oechslin+2007, Baiotti+2008, Bauswein+ 20II, 2012, Stergioulas+ 20II, Hotokezaka+ 2013, Takami 2014, 20I5, Bernuzzi 20I4, 2015, Bauswein+ 20I5, Clark+ 20I6, LR+20I6, de Pietri+ 20I6, Feo+ 2017, Bose+ 2017

merger frequency

Quasi-universal behaviour

Quasi-universal behaviour: inspiral

"surprising" result: quasiuniversal behaviour of GW frequency at amplitude peak (Read+2013)
Many other simulations have confirmed this (Bernuzzi+ 2014, Takami+ 2015, LR+2016).
Quasi-universal behaviour in the inspiral implies that once $f_{\max }$ is measured, so is tidal deformability, hence $I, Q, M / R$
$\Lambda=\frac{\lambda}{\bar{M}^{5}}=\frac{16}{3} \kappa_{2}^{T}$ tidal deformability or Love number

Quasi-universal behaviour: post-merger

We have found quasiuniversal behaviour: i.e., the properties of the spectra are only weakly dependent on the EOS.

This has profound implications for the analytical modelling of the GW emission: "what we do for one EOS can be extended to all EOSs.'

Quasi-universal behaviour: post-merger

- Correlations with Love number found also for high frequency peak f_{2}.
-This and other correlations are weaker but equally useful.
- Important correlation also between compactness and deformability

Radius estimate from binary population

Bose, Chakravarti, LR, Sathyaprakash, Takami (20I7)

Analytical modelling of postmerger waveform

-Postmerger appears hopeless but isn't (Clark+14, I6; Bose+ I7)

Analytical modelling of postmerger waveform

-Knowledge of spectral properties provides analytic ansatz

$$
\begin{gathered}
h(t)=\alpha \exp \left(-t / \tau_{1}\right)\left[\sin \left(2 \pi f_{1} t\right)+\sin \left(2 \pi\left(f_{1}-f_{1 \epsilon}\right) t\right)+\right. \\
\left.\sin \left(2 \pi\left(f_{1}+f_{1 \epsilon}\right) t\right)\right]+ \\
\exp \left(-t / \tau_{2}\right) \sin \left(2 \pi f_{2} t+2 \pi \gamma_{2} t^{2}+\pi \beta_{2}\right)
\end{gathered}
$$

Analytical modelling of postmerger waveform

 -Knowledge of spectral properties provides analytic ansatz$$
\begin{aligned}
h(t)=\alpha \exp \left(-t / \tau_{1}\right) & {\left[\sin \left(2 \pi f_{1} t\right)+\sin \left(2 \pi\left(f_{1}-f_{1 \epsilon}\right) t\right)+\right.} \\
& \left.\sin \left(2 \pi\left(f_{1}+f_{1 \epsilon}\right) t\right)\right]+ \\
\exp \left(-t / \tau_{2}\right) & \sin \left(2 \pi f_{2} t+2 \pi \gamma_{2} t^{2}+\pi \beta_{2}\right)
\end{aligned}
$$

Analytical modelling of postmerger waveform

- Overall pretty decent fit in phase -Fit in amplitude is less good but also less important

Analytical modelling of postmerger waveform

- Good match is clear also in frequency space

In summary: despite the complex signal, an analytic description of the full GW signal is now possible.

Even a small SNR counts

- Using analytical modelling performed Fisher-matrix analysis of GWs and Monte-Carlo simulation.
-Waveforms aligned at frequency, f_{2}^{c}. Standard frequency estimation yields value of f_{2}^{c} and statistical spread.
- Quasi-universal relation between f_{2} and compactness, and error-propagation, to deduce the error in radius.
- Employed IO0 BNS signals injected in 100 uncorrelated timeseries of Gaussian noise with aLIGO sensitivity.
- Used information on f_{1} and chirp mass from inspiral.
- Repeated over 900 experiments to build statistics.

Constraining the radius: MonteCarlo vs Fisher

- uniform distribution in mass [1.21, I.38] M• between I00 and 300 Mpc; isotropic distribution in space.
- dashed lines for results of Fisher-matrix analysis with $N=50$
- errors scale like \sqrt{N}

Constraining the radius: MonteCarlo vs Fisher

- Gaussian distribution in mass [1.21, I.38] M• centred at $1.35 \mathrm{M} \odot$ with variance 0.05 Binaries are between 100 and 300 Mpc ; isotropic distribution in space.
- dashed lines for results of Fisher-matrix analysis with $N=50$
- errors scale like \sqrt{N}

All in all

- stiff EOSs: $|\Delta R /\langle R\rangle|<10 \%$ for N~20
- soft EOSs: $|\Delta R /\langle R\rangle| \sim 10 \%$ for N~50
- discriminating stiff/soft EOSs will possible even with moderate N
- discriminating two-stiff /two-soft EOSs will be harder
-very soft EOSs remain a challenge
-golden binary: SNR ~ 6 at 30 Mpc $|\Delta R /\langle R\rangle| \lesssim 2 \%$ at 90% confidence

Electromagnetic counterparts

Electromagnetic counterparts

- Since 70's we have observed flashes of gamma rays with enormous energies $1050-53$ erg: gamma-ray bursts.
-There are two families of bursts: "long" and "short".
-The first ones last tens or more of seconds and could to be due to the collapse of very massive stars.
- The second ones last less than a second.
- Merging neutron stars most reasonable explanation but how do you produce a jet?

Presence of a jet immediately implies presence of large-scale magnetic fields

What happens when magnetised stars collide?
Need to solve equations of magnetohydrodynamics in addition to the Einstein equations
$T_{\mu \nu}=(e+p) u_{\mu} u_{\nu}+p g_{\mu \nu}+F_{\mu}{ }^{\lambda} F_{\nu \lambda}-\frac{1}{4} g_{\mu \nu} F^{\lambda \alpha} F_{\lambda \alpha}$,
$\nabla^{\nu} T_{\mu \nu}=0$

$$
\nabla_{\nu}\left(F^{\mu \nu}+g^{\mu \nu} \psi\right)=I^{\mu}-\kappa n^{\mu} \psi, \quad \nabla_{\nu}\left({ }^{*} F^{\mu \nu}+g^{\mu \nu} \phi\right)=-\kappa n^{\mu} \phi,
$$

Can we detect B-fields in the inspiral?

Compare $\mathrm{B} /$ no- B field:

- inspiral waveform is different but for unrealistic B-fields (i.e. $B \sim 1017 \mathrm{G}$).
- post-merger waveform is different for all masses; strong Bfields delay the collapse to BH

Influence of B-fields on inspiral is unlikely to be detected for realistic fields

Can we detect B-fields in the inspiral?

To quantify the differences and determine whether detectors will see a difference in the inspiral, we calculate the overlap

$\mathcal{O}\left[h_{\mathrm{B} 1}, h_{\mathrm{B} 2}\right] \equiv \frac{\left\langle h_{\mathrm{B} 1} \mid h_{\mathrm{B} 2}\right\rangle}{\sqrt{\left\langle h_{\mathrm{B} 1} \mid h_{\mathrm{B} 1}\right\rangle\left\langle h_{\mathrm{B} 2} \mid h_{\mathrm{B} 2}\right\rangle}}$
where the scalar product is
$\left\langle h_{\mathrm{B} 1} \mid h_{\mathrm{B} 2}\right\rangle \equiv 4 \Re \int_{0}^{\infty} d f \frac{\tilde{h}_{\mathrm{B} 1}(f) \tilde{h}_{\mathrm{B} 2}^{*}(f)}{S_{h}(f)}$
In essence, at these res:
$\mathcal{O}\left[h_{\text {во }}, h_{\mathrm{B}}\right] \gtrsim 0.999$
for $\mathrm{B} \lesssim 10^{17} \mathrm{G}$
Influence of B-fields on inspiral is unlikely to be detected

If magnetic fields cannot be measured in the inspiral, what happens after merger?

$$
M=1.5 M_{\odot}, B_{0}=10^{12} \mathrm{G}
$$

Animations:, LR, Koppitz

What happens when magnetised stars collide?

13.8 milliseconds

Magnetic fields in the HMNS have complex topology: dipolar fields are destroyed.

LR+20II

Simulation begins

$15.3 \mathrm{mi} / /$ iseconds
$J / M^{2}=0.83$

7.4 miliseconds

21.2 milliseconds

13.8 milliseconds

26.5 milliseconds

Credit: NASAiAEIVZIB/M. Koppiz and L. Rezzolla
$\mathrm{M}_{\mathrm{tor}}=0.063 M_{\odot} \quad \mathrm{t}_{\mathrm{accr}} \simeq M_{\mathrm{tor}} / M \simeq 0.3 \mathrm{~s}$

```
LR+20II
```

Neutron stars Masses: 1.5 suns Diameters: 17 miles (27 km) Separation: 11 miles (18 km)

7.4 milliseconds

13.8 milliseconds

These simulations have shown that the merger of a magnetised binary has all the basic features behind SGRBs

$$
J / M^{2}=0.83 \quad \mathrm{M}_{\mathrm{tor}}=0.063 M_{\odot} \quad \mathrm{t}_{\mathrm{accr}} \simeq M_{\mathrm{tor}} / M \simeq 0.3 \mathrm{~s}
$$

Beyond IMHD: Resistive Magnetohydrodynamics

Dionysopoulou, Alic, LR (2015)

- Ideal MHD is a good approximation in the inspiral, but not after the merger; match to electro-vacuum not possible.
- Main difference in resistive regime is the current, which is dictated by Ohm's law but microphysics is poorly known.
- We know conductivity σ is a tensor but hardly know it as a scalar (prop. to density and inversely prop. to temperature).
- A simple prescription with scalar (isotropic) conductivity:

$$
J^{i}=q v^{i}+W \sigma\left[E^{i}+\epsilon^{i j k} v_{j} B_{k}-\left(v_{k} E^{k}\right) v^{i}\right],
$$

$\sigma \rightarrow \infty$ ideal-MHD (IMHD)
$\sigma \neq 0 \quad$ resistive-MHD (RMHD)
$\sigma \rightarrow 0$ electrovacuum
$\sigma=f\left(\rho, \rho_{\min }\right)$ phenomenological prescription

NOTE: the magnetic jet structure is not an outflow. It's a plasma-confining structure. In IMHD the magnetic jet structure is present but less regular. In RMHD it is more regular at all scales.

The magnetic jet structure maintains its coherence up to the largest scale of the system.

$t=18.537 \mathrm{~ms}$

With due differences, other groups confirm this picture

Kiuchi+ 2014

RMHD

Recap

- Spectra of post-merger shows clear "quasi-universal" peaks.

VUnless binary very close, peaks have SNR ~ I . However, multiple signals can be stacked and SNR will increase coherently.
\square Parallel Fisher-matrix and Monte-Carlo simulations can be performed combining information from inspiral and postmerger:

- stiff EOSs: $|\Delta R /\langle R\rangle|<10 \%$ for $N \sim 20$
- soft EOSs: $|\Delta R /\langle R\rangle|<10 \%$ for $N \sim 50$
- very soft EOS will be a challenge for aLIGO-Virgo (ET?)

IV Electromagnetic counterparts and a jet are likely to be produced but the details of this picture are still far from clear.

