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Plan of the lectures

*Lecture [: brief introduction to numerical relativity

K Lecture II: brief review dynamics of merging binaries

*Lecture Ill: brief overview of EOS constraints from mergers

*L. Baiotti and L. Rezzolla, Rep. Prog. Phys. 80, 096901, 2017
*V. Paschalidis, Classical Quantum Gravity 34, 084002 2017
*Rezzolla and Zanotti, “Relativistic Hydrodynamics”, Oxford University Press, 2013



[ he two-body problem: Newton vs Einstein

nteracting only gravitationally

n Newtonian gravity solution Is ana
there exist closed orbits (circular/ell
GM
3
d12

= T

ake two objects of mass M1 and M2

ytic:

btic) with

where M =mqi+mo,r =71 —1r9,di2 = |11 — T2l

In Einstein’s gravity no analytic solution! No closed orbits: the
system loses energy/angular momentum via gravitational waves.



The two-body problem in GR

*For BHs we know what to expect:

BH + BH =y BH + GWVs

Hanford, !va hngto-x (1)

Livirgston, Louisiana (L1)
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The two-body problem in GR

*For BHs we know what to expect:
BH + BH ey B+ GWVs

*For NSs the question Is more subtle: the merger leads to an
hyper-massive neutron star (HMNS), ie a metastable equilibrium:

NS + NS s HMNS+oee 2emPp BHFOrUS 00e 2y BH + GWs



The two-body problem in GR

*For BHs we know what to expect:
BH + BH ey B+ GWVs

*For NSs the question Is more subtle: the merger leads to an
hyper-massive neutron star (HMNS), ie a metastable equilibrium:

NS + NS e HMNS+oee 2Py BHFOrUS 00e 2o BH + GWs

* HMNS phase can provide
clear information on EOS
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* BH+torus system may tell us
on the central engine of GRBs




The two-body problem in GR

*For BHs we know what to expect:
BH + BH ey B+ GWVs

*For NSs the question Is more subtle: the merger leads to an
hyper-massive neutron star (HMNS), ie a metastable equilibrium:

NS + NS s HMNS+oee 2emPp BHFOrUS 00e 2y BH + GWs

*ejected matter
undergoes
nucleosynthesis of
heavy elements




[he equations of numerical relativity

1 :
T — - g R =8nT,,, (field equations)

V,T"" =0, (cons. energy/momentum)
V.(pu") =0, (cons. rest mass)
p=7p(p,€Ye,...), (equation of state)
VoF¥ =1 V F* =0, (Maxwell equations)

[ =i = =l (energy — momentum tensor)
pur — Ly m e

n GR these equations do not possess an analytic solution
N the regimes we are Interested In




merger =——3 —3 BH + torus




3H + torus

Quantitative differences are produced by:

* total mass (prompt vs delayed collapse)



Broadbrush picture

M/ Mo, q = 1
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3H + torus

Quantitative differences are produced by:

* total mass (prompt vs delayed collapse)

* mass asymmetries (HMNS and torus)
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e quasi-Keplerian configurations
overall unequal-mass systems have all the ingredients

= needed to create a GRB



merger ——3%» HMNS —>

B3H + torus

Quantitative differences are produced by:

* total mass (prompt vs delayed collapse)
* mass asymmetries (HMNS and torus)

* soft/stiff EOS (inspiral and post-merger)
* magnetic fields (equil. and EM emission)

* radiative losses (equil. and nucleosynthesis)



ow to constrain the EOS
from the GWVs
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Anatomy of the GW signal
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Anatomy of the GW signal
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Inspiral: well approximated by PN/EOB; tidal effects important



Anatomy of the GW signal
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Merger: highly nonlinear but analytic description possible



Anatomy of the GW signal
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post-merger: quasi-periodic emission of bar-deformed HMNS



Anatomy of the GW signal
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What we can do nowadays

Takami, LR, Baiotti (2014, 2015), LR+ (2016)
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-xtracting information from the EOS

Takami, LR, Baiotti (2014, 2015), LR+ (2016)
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emission lines from stellar atmospheres.
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A new approach to constrain the EOS

Oechslin+2007, Baiotti+2008, Bauswein+ 201 |, 2012, Stergioulas+ 201 |, Hotokezaka+ 2013, Takami
2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, Clark+ 2016, LR+2016, de Pietri+ 2016, Feo+
2017, Bose+ 2017 .
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Quasi-universal behaviour
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Quasi-universal behaviour: inspiral

3.8 _
v _
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“surprising” result: quasi-
universal behaviour of GW

frequency at amplitude peak
(Read+201 3)

Many other simulations have

confirmed this (Bernuzzi+ 2014,
Takami+ 2015, LR+2016) .

Quasl-universal behaviour
in the inspiral implies that
once fmax IS Measured, so IS
tidal deformabillity, hence

I? Q? M/R

tidal deformability or Love number



i [kHz]

Quasi-universal behaviour: post-merger

T T T T Tl We have found quasi-
o Eq (25) in Takami et al. 2015 .: universal behaviour: I.e,,
251 /2515%24 « 4/ - the properties of the
L Sy 1 spectra are only weakly
o | dependent on the EOS.
, oL GNH3 % )
e J“‘ : 1 This has profound
. 1 Implications for the
15| e epemeaa s - analytical modelling of the
' $fonertetal BB 1 GW emission: “what we
e 81 w13 do for one EOS can be

M/R extended to all EOSs.”



Quasi-universal behaviour: post-merger

fo [kHz]

N, g ]| eCorrelations with Love
: P T2 number found also for high
- SN 11 frequency peak fa.
3.0} o . [ e T = :
I = asf e 11 *This and other correlations
: : we:e- 11 are weaker but equally useful.
APRE . N\C PO e e
- ALF2 é iy -
2.5 oLy ° -
H4
~ GNH3 |
- v L5220 y
- —— Eq. (23) .
] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] .I I.
100 200 300 400
Ky
*lmportant correlation also between

0.10 0.15 0.20 0.25 0.30

compactness and deformability MR



Radius estimate from
binary population

Bose, Chakravarti, LR, Sathyaprakash, Takami (201 7)



Analytical modelling of postmerger wavetorm

*Postmerger appears hopeless but isn't (Clark+14, 16; Bose+17)
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Analytical modelling of postmerger wavetorm

*Knowledge of spectral properties provides analytic ansatz

h(t) = aexp(—t/m) [sin(2m fit) + sin(2m(f1 — fie)t)+
sin(2m(f1 + f1e)t)]+
exp(—t /7o) sin(27 fat + 2myot° + wBa) .




Analytical modelling of

hostmerger waveform

* Knowledge of spectral proper

les provides analytic ansatz

A(t) = aexp(—t /) [sin(2mfut) + sin(2n(f1 — fi)t)+
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Analytical modellin
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Ana\yﬂca\ modeng of postmerger wavetorm
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- *Good match is
clear also In
frequency space

: . In summary:
oo gareseassod - despite the

: it . complex signal, an
analytic description
of the full GW
signal Is now
possible.
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* Using analytical modelling performed Fisher-matrix

analysis of GWs and Monte-Carlo simulat

* Waveforms aligned at frequency, fs5. Stanc
estimation yields value of f2 and statistical

LION.

ard frequency
spread.

* Quasi-universal relation between f2 and compactness,
and error-propagation, to deduce the error In radius.

*Employed |00 BNS signals injected in 100 uncorrelated
timeseries of Gaussian noise with alLIGO sensitivity.

* Used information on f1 and chirp mass from inspiral.

* Repeated over 900 experiments to bulld statistics.



Constraining the radius: MonteCarlo vs Fisher

AR/(R)| [%)
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e uniform distribution In
mass [ .21, 1.38] M®

between |00 and 300
Vpc; 1sotropic
distribution In space.

* dashed lines for results

of Fisher-matrix analysis
with N=50

*errors scale like vV N



Constraining the radius: MonteCarlo vs Fisher

AR/(R)| [%)
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uniform distribution
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e Gaussian distribution in
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121, 1.38] Ma
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[AR/(R)| [7]

All In al
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uniform distribution

N =120
N =50 -
N =100 -

(Gaussian distribution H4

ostiff EOSs: |AR/(R)| < 10% for
N~20

esoft EOSs: |AR/(R)| ~ 10% for
N~50

e discriminating stiff/soft EOSs will
possible even with moderate N

*discriminating two-stiff /two-soft
FOSs will be harder

*very soft EOSs remain a challenge

*golden binary: SNR ~ 6 at 30 Mpc
AR/(R)| < 2% at 90% confidence



Electromagnetic
counterparts




tlectromagnetic counterparts

*Since /0's we have observed flashes of gamma rays
with enormous energies [0-9-23 erg: gamma-ray bursts.

* [ here are two families of bursts: “long’” and “short’.

* [he first ones last tens or more of seconds and could
to be due to the collapse of very massive stars.

* [ he second ones last less than a second.

*Merging neutron stars most
reasonable explanation but
how do you produce a jet!




Presence of a jet immediately implies presence
of large-scale magnetic fields

What happens when magnetised stars collide!?

Need to solve equations of
magnetohydrodynamics in addition to the
Einstein equations

1
T,LLV = (6 _I_p) Uy Uy _|_pg,uy == FILLAFVA =y Zg,uu FA&F)\OM

VYT, =0
Wl e gt a = 117 = by T gl ) = = @



Can we detec
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. B-fields in the inspiral?

Compare B/no-B field:

*inspiral waveform is different

but

for unrealistic B-fields (1.e.

B~1017 G)

* post-merger waveform Is
different for all masses; strong B-
fields delay the collapse to BH

Inf
NS

uence of B-fields on

diral I1s unlikely to be

detected for realistic fields
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Ol gy hy ]

Can we detect

3-flelds In the inspiral?

To quantify the differences and determine whether detectors
will see a difference in the inspiral, we calculate the overlap
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Influence of B-fields on inspiral
s unlikely to be detected



T magnetic fields cannot be measured In
the inspiral, what happens after merger?

®

M =15M, By = 10"% G

9 11.75 145 9.5 12 145

Ig(rho) [g/cm’ | Ig(IB]) |Gauss)

Animations:, LR, Koppitz



What happens when magnetised stars collide!?

Magnetic fields

Neutron stars
Masses: 1.5 suns
Diameters: 17 miles (27 km)
Separation: 11 miles (18 km)

Simulation begins 7.4 miliiseconds 12.8 milliseconds

Magnetic fields in the HMNS have complex
topology: dipolar fields are destroyed.



1.75 145

1g(rho) [g/cn? | E Ig(|B) |Gauss)




LR+ 201 |

Magnetic fields

Neutron stars

Masses: 1.5 suns
Diameters: 17 miles (27 km)

Separation: 11 miles (18 km)
7.4 miliiseconds 13.8 milliseconds

Simulation begins

Black hole forms

Mass: 2.9 suns e
Horizon diameter: 5.6 miles (9 ' W " _
26.5 milliseconds

21.2 milliseconds
Credit: NASA/AENZIB/M. Koppitz and L. Rezzalla

J/M? = 0.83 Mior = 0.063Ms  tacer = Myor/M ~ 0.3 s




LR+ 201 |

Neutron stars
Masses: 1.5suns
Diameters: 17 miles (27 km)
Separation: 11 miles (1B km)

Simu'ation begins 7.4 miliiseconds 12.8 milliseconds

3 'g" 3"
| fl" /
3 d, Jetllke
{\ VA Iu - magnetic field
7 ;’, emerges
i =

B
"\‘*‘x

B
T SRR

e These simulations have shovvn that the me‘rger of a

Hor

m Magnetised binary has all the basic features behind SGRBS

ezzolla

J/M? = 0.83 Mior = 0.063Ms  tacer = Mioyr /M =~ 0.3






Beyond IMHD: Resistive Magnetohydrodynamics
Dionysopoulou, Alic, LR (2015)

*ldeal MHD Is a good approximation in the inspiral, but not
after the merger; match to electro-vacuum not possible.

*Main difference In resistive regime is the current, which is
dictated by Ohm's law but microphysics is poorly known.

* We know conductivity 0 Is a tensor but hardly know It as a
scalar (prop.to density and inversely prop. to temperature).

* A simple prescription with scalar (isotropic) conductivity:
J' = qu* + WolE" + €95y, By, — (v E®)v'],

o — 00 ideal-MHD (IMHD)
o # 0 resistive-MHD (RMHD) o = f(p, Pmin)

o — (0 electrovacuum phenomenological prescription
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t = 22.446 ms
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NOTE: the magnetic jet structure is not an outflow. It's a
blasma-confining structure.

n IMHD the magnetic jet structure I1s present but less regular;
n RMHD 1t 1s more regular at all scales.
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With due differences, other groups confirm this picture

Kiuchi+ 2014

SR Ruiz+ 2016

Kawamura+2016

Dionysopoulou+ 2015
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Recap

[F] Spectra of post-merger shows clear "quasi-universal” peaks.

[4 Unless binary very close, peaks have SNR ~ |. However, multiple

signals can be stacked anc

[ Parallel Fisher-matrix and

merger:

¢ stiff EOSs:
¢ soft EOSs:

AR/(R)
AR/(R)

SNR will increase coherently.

Monte-Carlo simulations can be

berformed combining information from inspiral and post-

< 10% for N~20
< 10% for N~50

¢ very soft EOS will be a challenge for alLIGO-Virgo (ET?)

lZEIectromagnetic counterparts and a jet are likely to be
produced but the detalls of this picture are still far from clear.



