

ROGACHEVSKY Oleg • for MPD collaboration Helmholtz International Summer School August 28 2018 Dubna

HEP experiments data flow

FairRoot

MPD/BM@N/SPDRoot design

Realistic clustering in MPD TPC

Tracking in MPD TPC

Tracking in MPD TPC

Clustering in GEM

- There are realistic hit finder in GEMs
- For the GEM stations procedure of the fake hits production is implemented

Station 0 (what is it)

Event Display for the NICA experiments

BM@N event data: GEM points and reconstructed tracks

based on EVE package

MPD event data: TPC hits and EMC towers

Theoretical predictions

The Search for the Quark-Gluon Plasma

arXiv:hep-ph/9602235 John W. Harris, Berndt Müller

Signatures of quark-gluon plasma formation and the chiral phase transition. The expected behavior of the various signatures is plotted as a function of the measured transverse energy, which is a measure of the energy density, in the region around the critical energy density ε_c of the transition. When two curves are drawn, the hatched curve corresponds to the variable described by the hatched ordinate on the right. See text of review for details

Heavy Ion Experiments at the AGS

5 large experiments: E802/866/917, E810, E814/877, E864, E895.

Experiment	Beam	Technology	Observables	
E802		Single arm magnetic spectrometer	Spectra (π, p, K [±]), HBT	
E810		TPCs in magnetic field	Strangeness (K_{s}^{0} , Λ)	
E814	51	Magnetic spectrometer + calorimeters	Spectra (p) + E_t	
E859		E802 + 2 nd level PID trigger	Strangeness (Λ)	
E866		2 magnetic spectrometers (TPC, TOF)	Strangeness (Kaons)	
E877		Upgrade of E814		
E891	1	Upgrade of E810		
E895	Au	EOS TPC	Spectra (π, p, K [±]), HBT	
E896		Drift chamber + neutron detector	H^0 Di-baryon, Λ	
E910		EOS TPC + TOF	p+A Collisions	
E917		Upgrade of E866		

Heavy Ion Experiments at the SPS

Experiment	Beam	Technology	Observables
NA34		Muon spectrometer + calorimeter	Di-leptons, p, π, K, γ
NA35		Streamer chamber	π, K⁰ _s , Λ, HBT
NA36	1	TPC	Κ ⁰ _s , Λ
NA38	¹⁶ O, ³² S	Di-muon spectrometer (NA10)	Di-leptons, J/ψ
WA80/WA93	1	Calorimeter + Plastic Ball	γ, π ⁰ , η
WA85	1	Mag. spectrometer with MWPCs	K ⁰ _s , Λ, Ξ
WA94	1	WA85 + Si strip detectors	K ⁰ _s , Λ, Ξ
NA44	¹⁶ O, ³² S,	Single arm magnetic spectrometer	π, K±, p
NA45	²⁰⁸ Pb	Cherenkov + TPC	Di-leptons (low mass)
NA49		Large volume TPCs	π, K [±] , p, K ⁰ _s , Λ, Ξ, Ω,
NA50	1	NA38 upgrade	Di-leptons, J/ψ
NA52	208 P b	Beamline spectrometer	Strangelets
WA97		Mag. spectrometer with Si tracker	h ⁻ , K ⁰ _s , Λ, Ξ, Ω
WA98	1	Pb-glass calorimeter + mag. spectrom.	γ, π ^ο , η
NA57		WA97 upgrade	h ⁻ , K ⁰ _s , Λ, Ξ, Ω
NA60	¹¹⁴ In	NA50 + Si vertex tracker	Di-leptons, J/ψ

Strangeness in QGP

In 1982 J. Rafelski and B. Müller predicted that enhancement of strangeness production is a signal of QGP "Strangeness Production in the Quark-Gluon Plasma" Phys. Rev. Lett. 48(1982)

"A substantial enhancement of production rates of multi-strange antibaryons in nuclear collisions in particular at central rapidity and at highest transverse masses has therefore been proposed as a characteristic signature of QGP."

Phys. Lett. 62(1991)

Idea: if s-(anti)quarks are created at QGP stage, then their number should not be changed during further evolution since s-(anti)quarks number is small and since density decreases => there is no chance for their annihilation! Hence, we should observe chemical enhancement of strangeness

Onset of deconfinement (NA49/61)

Statistical Model of the Early Stage

Gazdzicki M. Gorenstein M. Acta. Phys. Pol., B30: 2705 1999

Invariant-mass spectrum of e⁺ e⁻ -pairs compared to the expectation from the hadron decay cocktail. The expectations from model calculations assuming a dropping of the ρ meson mass (blue) or a spread of the ρ width in the medium (red) are also shown.

Heavy Ion Experiments at RHIC

Experiment	Technology	Observables π , K [±] , p, K ⁰ _s , Λ, Ξ, Ω,	
STAR	TPC and Si vertex tracker (+ EMCAL, TOF)		
PHENIX	Drift chambers, calorimeter, RICH, TOF, muon spectrometer	γ, π⁰, η, J/ψ, K⁺, p,	
BRAHMS 2 arm magnetic spectrometer		π, K [±] , p (large acceptance)	
PHOBOS	Magnetic spectrometer with Si tracker	charged particles (large acceptance)	

The Quark-Gluon-Plasma is Found at RHIC

BNL -73847-2005

Relativistic Heavy Ion Collider (RHIC) • Brookhaven National Laboratory, Upton, NY 11974-5000

CONTENTS

Forward	i
Quark Gluon Plasma and Color Glass Condensate at RHIC? The Perspective from the BRAHMS Experiment.	т
Formation of Dense Partonic Matter in Relativistic Nucleus-Nucleus Collisions at RHIC: Experimental Evaluation by the PHENIX Collaboration	33
The PHOBOS Perspective on Discoveries at RHIC	159
Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions	253

The early measurements have revealed compelling evidence for the existence of a new form of nuclear matter at extremely high density and temperature – a medium in which the predictions of QCD can be tested, and new phenomena explored, under conditions where the relevant degrees of freedom, over nuclear volumes, are expected to be those of quarks and gluons, rather than of hadrons. This is the realm of the quark gluon plasma, the predicted state of matter whose existence and properties are now being explored by the RHIC experiments.

STAR BES QGP signatures

The particular observables that STAR has identified as the essential drivers of our run plan are:

- (A-1) Constituent-quark-number scaling of v_{2} , indicating partonic degrees of freedom;
- (A-2) Hadron suppression in central collisions as characterized by the ratio $R_{_{\rm CP}}$;
- (A-3) Untriggered pair correlations in the space of pair separation in azimuth and pseudorapidity, which elucidate the ridge phenomenon;
- (A-4) Local parity violation in strong interactions, an emerging and important RHIC discovery in its own right, is generally believed to require deconfinement, and thus also is expected to turn-off at lower energies.

A search for signatures of a phase transition and a critical point. The particular observables that we have identified as the essential drivers of our run plan are:

- (B-1) Elliptic & directed flow for charged particles and for identified protons and pions, which have been identified by many theorists as highly promising indicators of a "softest point" in the nuclear equation of state;
- (B-2) Azimuthally-sensitive femtoscopy, which adds to the standard HBT observables by allowing the tilt angle of the ellipsoid-like particle source in coordinate space to be measured; these measurements hold promise for identifying a softest point, and complements the
- momentum- space information revealed by flow measurements, and
 - (B-3) Fluctuation measures, indicated by large jumps in the baryon, charge and strangeness susceptibilities, as a function of system temperature the most obvious expected manifestation of critical phenomena.

Studying the Phase Diagram of QCD Matter at RHIC

Contents

1	Intr	oduction	3
2	Rev	iew of BES-I Results and Theory Status	5
-	21	Region of the Phase Diagram Accessed in BES-I	5
	22	Search for the Critical Point	8
	03	Search for the First-order Phase Transition	10
		231 Directed Flow (v.)	10
		2.2.1 Directed Flow (v[]	12
	25.4	2.5.2 Average transverse stass.	12
	44	Search for the fillestion of QOP Porthanon	13
		2.4.1 Emple Flow	13
		2.4.2 Nuclear Modification Factor	18
		2.4.3 Dynamical Charge Correlations	21
		2.4.4 Chiral Transition and Dileptons	24
	2.5	Summary of BES-I	27
3	Prop	posal for BES Phase-II	30
	3.1	Physics Objectives and Specific Observables	30
	12	3.1.1 R_{CP} of identified hadrons up to $p_T = 5 \text{ GeV}/c$	32
		3.1.2 The v2 of \$\$\$\$ mesons and NCQ scaling for indentified particles	33
		3.1.3 Three-particle correlators related to CME/LPV	34
		3.1.4 The centrality dependence of the slope of $y_1(y)$ around midrapidity	36
		3.1.5 Proton-pair correlations	38
		3.1.6 Improved $\kappa\sigma^2$ for net-protons	40
		3.1.7 Dilepton production	41
	3.2	Beam request	43
	33	The Fixed-Target Program	45
	34	The Importance of $n+n$ and $n+A$ Systems	45
		Collider Performance	47
	17.6	Detector Lagardan	47
		L BALLAS TITAT I TRUTTATIAN	
	2.0	Delector Opgrades	49
	2.0	3.6.1 <i>iTPC</i>	48

4	Summary

50

STAR BES I results

High P_{T} suppression

Stephen Horvat Quark Matter 2015

Ridge effect

Chiral Magnetic Effect

STAR BES I results

STAR BES I results

STAR, PRL 112, 032302 (2014)

The kurtosis of the event-by-event distribution of the net proton (i.e. proton minus antiproton) number per unit of rapidity, normalized such that Poisson fluctuations give a value of 1.

In central collisions, published results in a limited kinematic range show a drop below the Poisson baseline around $\sqrt{s_{_{\rm N\,N}}}$ =27 and 19.6 GeV.

New preliminary data over a larger p_T range, although at present still with substantial error bars, hint that the normalized kurtosis may, in fact, rise above 1 at lower $\sqrt{s_{_{NN}}}$, as expected from critical fluctuations..

The grey band shows the much reduced uncertainties anticipated from BES-II in 2018-2019, for the 0-5\% most central collisions.

STAR BES program

√s _№ (GeV)	µ _в (Me∨)	MinBias Events (10°)	Time (weeks)	Year
7.7	420	4.3	4	2010
11.5	315	11.7	2	2010
14.5	260	24.0	3	2014
19.6	205	35.8	1.5	2011
27.0	155	70.4	1	2011
39.0	115	130.4	2	2010
62.4	70	67.3	1.5	2010

√s _№ (GeV)	µ _в (Me∨)	Needed Events (10 ⁶)
7.7	420	100
9.1	370	160
11.5	315	230
14.5	260	300
19.6	205	400

Ι

Year	System and Energy	Physics/Observables	Upgrade
2017	• p+p @ 500 GeV • Au+Au @ 62.4 GeV	Spin sign change diffractiveJets	FMS post-shower, EPD (1/8 th), eTOF prototype
2018	• Zr+Zr, Ru+Ru @ 200 GeV • Au+Au @ 27 GeV	• CME, di-leptons • CVE	Full EPD? eTOF prototype
2019	Au+Au @ 14.5-20 GeV + fixed target	QCD critical pointPhase transitionCME, CVE,	Full iTPC, eTOF, and EPD
2020	Au+Au @ 7-11 GeV + fixed target	QCD critical pointPhase transitionCME, CVE,	
2020+	• Au+Au @ 200 GeV • p+A/p+p @ 200 GeV	 Unbiased jets, open beauty PID FF, Drell-Yan, longitudinal correlations 	• HFT+ • FCS, FTS

Π

Resent & future experiments for HIC

Facility	SPS	RHIC BES II	Nuclotron M	NICA	SIS/100 (300)	J-PARK HI
Laboratory	CERN Geneva	BNL Brookhaven	JINR Dubna	JINR Dubna	FAIR GSI Darmstadt	J-PARK
Experiment	NA61 SHINE	STAR PHENIX	BM@N	MPD	HADES CBM	JHITS
Start of data taking	2011	2017	2015	2019	2020/25	2025
√s _{NN} <u>(GeV)</u>	4.9 – 17.3	7.7 – 200	< 3.5	4 - 11	2.7 – 8.2	2.0 - 6.2
Physics	CP & OD	CP & OD	HDM	OD & HDM	OD & CP	OD& HDM

- CP critical point
- OD onset of deconfinement, mixed phase,1st order phase transition
- HDM hadrons in dense matter
- PDM properties of deconfined matter

Nuclotron based Ion Collider fAcility Mica

Beams – p,d(h)..¹⁹⁷Au⁷⁹⁺ Collision energy \sqrt{s} = **4-11** GeV/u (Au), **12-27** (p) Beam energy (fixed target) - **1-6** GeV/u Luminosity: **10**²⁷ cm⁻²s⁻¹(Au), **10**³² (p)

Experiments:

2 Interaction points – **MPD** and SPD Fixed target experiment **BM@N**

Feasibility study for heavy lon collision at NICA

- UrQMD
- QGSM
- Hybrid UrQMD
- VHLLE
- THESEUS
- pHSD

Event generators + exp. data databases

Energy s

2, 4, 7, 9, 11

Interactions

pC MC+exp

AuAu MC

CC

- ✓ UrQMD
- ✓ QGSM ✓ PHSD
- ✓ Hybrid UrQMD
- ✓ vHLLE_UrQMD
- ✓ 3FD(Theseus)

32902 files

~ 10^6 events

for each

interaction

Strange and multi-strange baryons

Stage'1 (TPC+TOF): Au+Au @ 11 GeV, UrQMD

large phase-space

Prospects for study of dileptons

- Event generator: UrQMD+Pluto (for the cocktail) central Au+Au @ 8 GeV
- PID: dE/dx (from TPC) + TOF (s ~100 ps) + ECAL

Prospects for study of dileptons

- Event generator: UrQMD+Pluto (for the cocktail) central Au+Au @ 8 GeV
- PID: dE/dx (from TPC) + TOF (s ~100 ps) + ECAL

Flow performance

Au+Au@11 A GeV; GEANT3; UrQMD (LAQGSM), 4M events

event plane resolution

flow harmonics (v1/ v2)

 $R_n(\mathcal{W}_{EP,1})$ – resolution correction factor

φ – azimuthal angle of produced particle
 *Ψ*_{EP,1} – event plane angle

event plane: FHCal centrality: TPC PID: TOF+TPC

Stage 2: central Au+Au @ 5 AGeV; DCM-QGSM

hyper nucleus	yield in 10 weeks
³∧He	9 · 10 ⁵
⁴ ∧He	1 · 10 ⁵

Directed flow slope

P. Batyuk et al. Phys. Rev. C 94, 044917 (2016)

$$v_1(y) = \langle \cos(\phi - \Psi_{\rm RP}) \rangle = \langle p_x / \sqrt{p_x^2 + p_y^2} \rangle,$$

Energy scan of the slope of the directed flow (dv_1/dy) of protons for semicentral (b = 6 fm) Au+Au collisions

Proton rapidity in Theseus

central

semicentral

ISTER LUG

K⁺/ π^+ ratio

THESEUS

Net-proton mid rapidity Curvature

Yu.B. Ivanov, Phys. Lett. B721 123 (2013)

Femtoscopy @ NICA

VHLLE+URQMD MODEL Phys. Rev. C 91, 064901 (2015)

 $C(\mathbf{q}) = N \left(1 + \lambda \exp(-R_{\text{out}}^2 q_{\text{out}}^2 - R_{\text{side}}^2 q_{\text{side}}^2 - R_{\text{long}}^2 q_{\text{long}}^2) \right)$

BM@N experiment at NICA

ST (Silicon Tracker)

TOF1(mRPC)

TOF2(mRPC)

GEM

CPC

Straw

DCH

ZDC

10

AuAu
$$E_{beam} = 4 \text{ GeV}$$

year	2016	2017 spring	2017 autumn	2019	2020 and later
beam	$d(\uparrow)$	C, Ar	Kr	Au	Au, p
max.inter sity, Hz	n1M	1M	$1\mathrm{M}$	1M	10M
trigger rate, Hz	10k	10k	20k	20k	50k
central tracker status	6 GEM half pl.	8 GEM half pl.	10 GEM half pl.	8 GEM full pl.	12 GEMs or 8 GEMs + Si planes
experim. status	techn. run	techn. run	physics run	stage 1 physics	stage 2 physics

BM@N experiment at NICA

BM@N Λ^0 reconstruction ($\mathbf{E}_{kin}^{beam} = 4.0 \text{ AGeV}$)

MPD experiment at NICA

MPD event display
$$AuAu \sqrt{s} = 11 \ GeV$$

NICA White Paper

Hadrons and Nuclei

Topical Issue on Exploring Strongly Interacting Matter at High Densities - NICA White Paper edited by David Blaschke, Jörg Aichelin, Elena Bratkovskaya, Volker Friese, Marek Gazdzicki, Jørgen Randrup, Oleg Rogachevsky, Oleg Teryaev, Viacheslav Toneev

FEASIBILITY STUDY OF HEAVY ION PHYSICS PROGRAM AT NICA

P. N. Batyuk ^{1,*}, V. D. Kekelidze ¹, V. I. Kolesnikov ¹, O. V. Rogachevsky ¹, A. S. Sorin ^{1,2}, V. V. Voronyuk ¹ on behalf of the BM@N and MPD collaborations

¹ Joint Institute for Nuclear Research, Dubna ² National Research Nuclear University "Moscow Engineering Physics Institute" (MEPhI), Moscow

There is strong experimental and theoretical evidence that in collisions of heavy ions at relativistic energies the nuclear matter undergoes a phase transition to the deconfined state — Quark–Gluon Plasma. The caused energy region of such a transition was not found at high energy at SPS and RHIC, and search for this energy is shifted to lower energies, which will be covered by the future NICA (Dubna), FAIR (Darmstadt) facilities and BES II at RHIC. Fixed target and collider experiments at the NICA facility will work in the energy range from a few AGeV up to $\sqrt{s_{NN}} = 11$ GeV and will study the most interesting area on the nuclear matter phase diagram.

The most remarkable results were observed in the study of collective phenomena occurring in the early stage of nuclear collisions. Investigation of the collective flow will provide information on Equation of State (EoS) for nuclear matter. Study of the event-byevent fluctuations and correlations can give us signals of critical behavior of the system. Femtoscopy analysis provides the space-time history of the collisions. Also, it was found that baryon stopping power revealing itself as a "wiggle" in the excitation function of curvature of the (net) proton rapidity spectrum relates to the order of the phase transition.

The available observations of an enhancement of dilepton rates at low invariant masses may serve as a signal of the chiral symmetry restoration in hot and dense matter. Due to this fact, measurements of the dilepton spectra are considered to be an important part of the NICA physics program. The study of strange particles and hypernuclei production gives additional information on the EoS and "strange" axis of the QCD phase diagram.

In this paper a feasibility of the considered investigations is shown by the detailed Monte Carlo simulations applied to the planned experiments (BM@N, MPD) at NICA.

PHYSICS STUDIES FOR THE MPD	005
	011
PHYSICS STUDIES AT THE NUCLOTORON ENERGIES	041
THE NICA WHITE PAPER PROPOSALS	044
SUMMARY	046
REFERENCES	046

NICA advantagies

J. Cleymans MPD collaboration Meeting April, 2018

- Maximum in K⁺/π⁺ ratio is in the NICA energy region,
- ✓ Maximum in Λ/π ratio is in the NICA energy region,
- ✓ Maximum in the net baryon density is in the NICA energy region,
- Transition from a baryon dominated system to a meson dominated one happens in the NICA energy region.

Thank you for attention

to NICA physics